
1

INTEGRAL UNIVERSITY, LUCKNOW
DIRECTORATE OF DISTANCE EDUCATION

BCA-306/BCS-305 Paper Code: VP/B
VISUAL PROGRAMMING

2

DISCLAIMER: This academic material is not for sale. This academic material is not produced for any commercial benefit. We thank to all
writers, authors and publishers whose books strengthen us while preparing this material .Copy right of the content rest with the various original
content writers/authors/publishers.

3

CONTENTS

UNIT-1 PROBLEM SOLVING

UNIT-2 INTRODUCTION TO VISULA BASIC

UNIT-3 VISUAL BASIC FUNDAMENTAL

UNIT-4 CONTROL STRUCTURE

UNIT-5 WORKING WITH VISUAL B ASIC CONTROL

UNIT-6 CREATING MENU, POP UPS, TOOLBARS AND

DIALOG BOX

UNIT-7 PROCEDURE & FUNCTION

UNIT-8 ARRAYS IN VISUAL BASIC

UNIT-9 USER DEFINED DATA TYPE

UNIT-10 VISUAL BASIC BUILT IN FUNCTION

UNIT-11 ERROR HANDLING

UNIT-12 CLASS & OBJECTS

UNIT-13 COMPONENT OBJECT MODEL

UNIT-14 ACTIVEX CONTROL

UNIT-15 DATA ENVIRONMENT AND DATA REPORTS

IN VISUAL BASIC

UNIT-16 DATABASE MANAGEMENT SYSTEM

BIBLIOGRAPHY

4

5

PROBLEM SOLVING

NOTES
UNIT: 1-PROBLEM SOLVING

Contents
 Program Development Cycle
 Program Planning
 Flow Charts
 Pseudocode
 Hierarchical Chart
 Review & Self Assessment Question
 Further Readings

Program Development Cycle
Hardware refers to the machinery in a computer system (such as the
monitor, keyboard, and CPU) and software refers to a collection of
instructions, called a program (or project), that directs the hardware.
Programs are written to solve problems or perform tasks on a computer.
Programmers translate the solutions or tasks into a language the computer
can understand.
As we write programs, we must keep in mind that the computer will only
do what we instruct it to do. Because of this, we must be very careful and
thorough with our instructions.
Performing a Task on the Computer
The first step in writing instructions to carry out a task is to determine
what the output should be—that is, exactly what the task should produce.
The second step is to identify the data, or input, necessary to obtain the
output. The last step is to determine how to process the input to obtain the
desired output, that is, to determine what formulas or ways of doing things
can be used to obtain the output.
This problem-solving approach is the same as that used to solve word
problems in an algebra class. For example, consider the following algebra
problem:
How fast is a car traveling if it goes 50 miles in 2 hours?
The first step is to determine the type of answer requested. The answer
should be a number giving the rate of speed in miles per hour (the output).
The information needed to obtain the answer is the distance and time the
car has traveled (the input). The formula

rate distance / time
is used to process the distance traveled and the time elapsed in order to
determine the rate of speed. That is,

rate = 50miles / 2
= 25 miles / hour

A pictorial representation of this problem-solving process is

6

VISUAL BASIC
PROGRAMMING

NOTES

We determine what we want as output, get the needed input, and process
the input to produce the desired output.
In the following chapters we discuss how to write programs to carry out
the preceding operations. But first we look at the general process of
writing programs.
Program Planning
A recipe provides a good example of a plan. The ingredients and the
amounts are determined by what is to be baked. That is, the output
determines the input and the processing. The recipe, or plan, reduces the
number of mistakes you might make if you tried to bake with no plan at
all. Although it’s difficult to imagine an architect building a bridge or a
factory without a detailed plan, many programmers (particularly students
in their first programming course) frequently try to write programs without
first making a careful plan. The more complicated the problem, the more
complex the plan must be. You will spend much less time working on a
program if you devise a carefully thought out step-by-step plan and test it
before actually writing the program.

Many programmers plan their programs using a sequence of steps,
referred to as the program development cycle. The following step-by-
step process will enable you to use your time efficiently and help you
design error-free programs that produce the desired output.
1. Analyze: Define the problem.
Be sure you understand what the program should do, that is, what the
output should be. Have a clear idea of what data (or input) are given and
the relationship between the input and the desired output.
2. Design: Plan the solution to the problem.
Find a logical sequence of precise steps that solve the problem. Such a
sequence of steps is called an algorithm. Every detail, including obvious
steps, should appear in the algorithm. In the next section, we discuss three
popular methods used to develop the logic plan: flowcharts, pseudo code,
and top-down charts. These tools help the programmer break a problem
into a sequence of small tasks the computer can perform to solve the
problem.
Planning also involves using representative data to test the logic of the
algorithm by hand to ensure that it is correct.
3. Choose the interface: Select the objects (text boxes, command buttons,
etc.).
Determine how the input will be obtained and how the output will be
displayed. Then create objects to receive the input and display the output.
Also, create appropriate command buttons to allow the user to control the
program.

7

PROBLEM SOLVING

NOTES

4. Code: Translate the algorithm into a programming language.
Coding is the technical word for writing the program. During this

stage, the program is written in Visual Basic and entered into the
computer. The programmer uses the algorithm devised in Step 2 along
with knowledge of Visual Basic.
5. Test and debug: Locate and remove any errors in the program.
Testing is the process of finding errors in a program, and debugging is the
process of correcting errors that are found. (An error in a program is called
a bug.) As the program is typed, Visual Basic points out certain types of
program errors. Other types of errors will be detected by Visual Basic
when the program is executed; however, many errors due to typing
mistakes, flaws in the algorithm, or incorrect usages of the Visual Basic
language rules only can be uncovered and corrected by careful detective
work. An example of such an error would be using addition when
multiplication was the proper operation.
6. Complete the documentation: Organize all the material that describes
the program.
Documentation is intended to allow another person or the programmer at a
later date, to understand the program. Internal documentation consists of
statements in the program that are not executed, but point out the purposes
of various parts of the program. Documentation might also consist of a
detailed description of what the program does and how to use the program
(for instance, what type of input is expected). For commercial programs,
documentation includes an instruction manual. Other types of
documentation are the flowchart, pseudo code, and top-down chart that
were used to construct the program.
Although documentation is listed as the last step in the program
development cycle, it should take place as the program is being coded.
Programming Tools
This section discusses some specific algorithms and develops three tools
used to convert algorithms into computer programs: flowcharts, pseudo
code, and hierarchy charts.

You use algorithms every day to make decisions and perform tasks.
For instance, whenever you mail a letter, you must decide how much
postage to put on the envelope. One rule of thumb is to use one stamp for
every five sheets of paper or fraction thereof. Suppose a friend asks you to
determine the number of stamps to place on an envelope. The following
algorithm will accomplish the task.
1. Request the number of sheets of paper; call it Sheets. (Input)
2. Divide Sheets by 5. (Processing)
3. Round the quotient up to the next highest whole number; call it Stamps.
 (Processing)
4. Reply with the number Stamps. (Output)

The preceding algorithm takes the number of sheets (Sheets) as
input, processes the data, and produces the number of stamps needed

8

VISUAL BASIC
PROGRAMMING

NOTES

(Stamps) as output. We can test the algorithm for a letter with 16 sheets of
paper.
1. Request the number of sheets of paper; Sheets = 16.
2. Dividing 5 into 16 gives 3.2.
3. Rounding 3.2 up to 4 gives Stamps = 4.
4. Reply with the answer, 4 stamps.
This problem-solving example can be pictured by

Of the program design tool available, the three most popular are the
following:
Flowcharts:
Graphically depict the logical steps to carry out a task and show how the
steps relate to each other.
Pseudocode:
Uses English-like phrases with some Visual Basic terms to outline the
task.
Hierarchy charts:
Show how the different parts of a program relate to each other.
Flow Charts
A flowchart consists of special geometric symbols connected by arrows.
Within each symbol is a phrase presenting the activity at that step. The
shape of the symbol indicates the type of operation that is to occur. For
instance, the parallelogram denotes input or output. The arrows connecting
the symbols, called flow lines, show the progression in which the steps
take place.

Flowcharts should “flow” from the top of the page to the bottom.
Although the symbols used in flowcharts are standardized, no standards
exist for the amount of detail required within each symbol.
The main advantage of using a flowchart to plan a task is that it provides a
pictorial representation of the task, which makes the logic easier to follow.
We can clearly see every step and how each step is connected to the next.
The major disadvantage with flowcharts is that when a program is very
large, the flowcharts may continue for many pages, making them difficult
to follow and modify.

9

PROBLEM SOLVING

NOTES

10

VISUAL BASIC
PROGRAMMING

NOTES

PSEUDOCODE
Pseudocode is an abbreviated version of actual computer code (hence,
pseudocode). The geometric symbols used in flowcharts are replaced by
English-like statements that outline the process. As a result, pseudocode
looks more like computer code than does a flowchart.
Pseudocode allows the programmer to focus on the steps required to solve
a problem rather than on how to use the computer language. The
programmer can describe the algorithm in Visual Basic-like form without
being restricted by the rules of Visual Basic. When the pseudocode is
completed, it can be easily translated into the Visual Basic language.
The following is pseudocode for the postage stamp problem:
Program: Determine the proper number of stamps for a letter
Read Sheets (input)
Set the number of stamps to Sheets / 5
 (processing)
Round the number of stamps up to the next whole number
 (processing)

11

PROBLEM SOLVING

NOTES

Display the number of stamps
 (output)
Pseudocode has several advantages. It is compact and probably will not
extend for many pages as flowcharts commonly do. Also, the plan looks
like the code to be written and so is preferred by many programmers.
HIERARCHY CHART
The last programming tool we’ll discuss is the hierarchy chart, which
shows the overall program structure. Hierarchy charts are also called
structure charts, HIPO (Hierarchy plus Input- Process-Output) charts, top-
down charts, or VTOC (Visual Table of Contents) charts. All these names
refer to planning diagrams that are similar to a company’s organization
chart.

Hierarchy charts depict the organization of a program but omit the
specific processing logic. They describe what each part, or module, of the
program does and they show how the modules relate to each other. The
details on how the modules work, however, are omitted.
The chart is read from top to bottom and from left to right. Each module
may be subdivided into a succession of sub modules that branch out under
it. Typically, after the activities in the succession of sub modules are
carried out, the module to the right of the original module is considered. A
quick glance at the hierarchy chart reveals each task performed in the
program and where it is performed.

The main benefit of hierarchy charts is in the initial planning of a

program. We break down the major parts of a program so we can see what
must be done in general. From this point, we can then refine each module
into more detailed plans using flowcharts or pseudocode. This process is
called the divide-and-conquer method.

The postage stamp problem was solved by a series of instructions
to read data, perform calculations, and display results. Each step was in a
sequence; that is, we moved from one line to the next without skipping
over any lines. This kind of structure is called a sequence structure. Many
problems, however, require a decision to determine whether a series of
instructions should be executed. If the answer to a question is “Yes,” then
one group of instructions is executed. If the answer is “No,” then another
is executed. This structure is called a decision structure.

12

VISUAL BASIC
PROGRAMMING

NOTES

CLASS AVERAGE ALGORITHM
Problem: Calculate and report the grade-point average for a class.
Discussion: The average grade equals the sum of all grades divided by the
number of students. We need a loop to read and then add (accumulate) the
grades for each student in the class. Inside the loop, we also need to total
(count) the number of students in the class.
Input: Student grades
Processing: Find the sum of the grades; count the number of students;
calculate average grade
= sum of grades / number of students.
Output: Average grade

13

PROBLEM SOLVING

NOTES

Review & Self Assessment Question
Q1- What is program Development Life cycle?
Q2-What do you mean by program Planning?
Q3-What is Flow Chart?
Q4-What is Pseudocode?
Q5-What is Hierarchical Charts?
Further Readings
Visual basic by David I Schneider
Visual basic by Steven Holzner
Visual basic by Bill Sheldon
Visual basic by Billy Holls
Visual basic by Rob Windsor

14

VISUAL BASIC
PROGRAMMING

NOTES

UNIT: 2-INTRODUCTION TO
VISUAL BASIC

Contents
 Introduction to Visual Basic
 Critical VB Element
 Visual Basic History
 Integrated Development Environment
 Project Explorer
 Properties Window
 Object Browser
 Event Driven Programming
 Modules
 Review & Self Assessment Question
 Further Readings

Introduction
Visual Basic is a much-enhanced version of the BASIC programming
language and the BASIC Integrated Development Environment (IDE). The
bottom line of the enhancement is the VB can create Windows programs
whereas BASIC could only create DOS programs. Ok, so the
modifications are very major, but the idea holds true that Visual Basic is
BASIC for Windows.
Visual basic is a high level programming language developed from the
earlier DOS version called BASIC. Though, Visual Basic .NET is the
latest technology introduced by Microsoft with tons of new features
including the .NET framework and educational institues, Universities and
Software Development companies have migrated to VB .NET, Visual
Basic 6 is still widely learned and taught.
Learning Visual Basic 6 is quite easier than other programming languages
such as C++, C#, Java etc. This is because Visual Basic enables you to
work in a graphical user interface where you can just drag and drop
controls that you want to work with where you have to write bunches of
code to create in C++ or C# or even in Java. If you are new to
programming and want to start it in the smoothest and easiest way, then
you should start it with Visual Basic.

This Visual Basic is for anyone who wants to learn to program his
or her computer with Visual Basic. More importantly, this is for anyone
who’s flipped through other programming resources only to be
discouraged by obtuse language, jargon-ridden prose, and stuffed-shirt
attitudes. The Visual Basic (VB6) beginner's conversational style
incorporates plain-English explanations along with short programming
examples to lead the novice programmer by the hand through the techno
jungle of computer programming.

15

INTRODUCTION TO
VISUAL BASIC

NOTES

Visual Basic is initiated by using the Programs option
 Microsoft Visual Basic 6.0
Visual Basic 6.0. Clicking the Visual Basic icon, we can view a
copyright screen enlisting the details of the license holder of the copy of
Visual Basic 6.0. Then it opens in to a new screen as shown in figure 1
below, with the interface elements Such as MenuBar, ToolBar, The New
Project dialog box. These elements permit the user to build different types
of Visual Basic applications.
Critical Visual Basic Elements
Although Visual Basic has grown into a fairly complex programming tool, it is
still the case that a programmer can pretty much ignore all of the capabilities he
doesn't need (or understand) and still create very useful applications.
But, no matter how much a beginner, or how advanced you are, there are
still some fundamental areas in which you must be proficient to become a
VB programmer.

When you start VB, you will see a group of windows that are
known as the VB IDE (integrated development environment). As a
programmer you will spend the majority of you time here, so you might as
well get used to the IDE and spend a fair amount of time exploring the
menu options that the IDE provides. Pay closed attention to the keyboard
shortcuts that are available. If you've read my other Beginner sections
you'll know that I am a big fan of the keyboard and have argued that the #1
productivity tool you have is good typing skills. While in the IDE, you'll
find the keyboard shortcuts invaluable in writing your program quickly.

The second aspect of VB which programmers of all skill levels will
have in common is the VB language itself. Most of the questions I get
through email are focused on "how do I ..." and the answer is almost
always couched in terms of the code that it takes to perform the task. If
ever there was less boring reading than the VB language reference manual,
I don't know what it is, but it also provides one of the biggest payoffs of
studying that I can recommend. At least 90% of every question I answer
for visitors to my site is in the manual!

Every Visual Basic application will consist of controls, usually a
lot of them! In my opinion, the availability of controls (built-in, or controls
you can purchase) is the single biggest reason why VB has reached the
level of popularity that it currently enjoys. Because controls represent
hundreds (if not thousands) of hours of manpower to come up with full-
featured, debugged code which you can reuse in your program, controls
are easily the most cost-effective, and the most time-effective way that a
VB programmer has to add features to his program. Bottom line is that any
good programmer must be an expert at handling controls. In my
experience, once you've mastered the intrinsic controls, learning new
controls becomes very straightforward.

Because VB has moved to the event-driven model of programming,
the last critical VB topic I will mention is that of events. Events are not
very complicated but the concept is significantly different than the old-

16

VISUAL BASIC
PROGRAMMING

NOTES

style linear programming of the original BASIC. Simply put, when a VB
program is started it sits and waits for an event to occur. The event can be
a key press by the user or the movement of a mouse. Either way, the VB
programming model is that your program will only react to events. When
an event occurs, VB will execute the code associated with that event. So
your job as a programmer is to basically create the code which your
program executes in response to those events.
Programming Basics
To toss in a bit of philosophy, I view a programmer's job as getting to the end
product with a minimum of effort. When you're paid by the hour you have an
obligation to your employer (even if it's yourself) to minimize the cost/schedule
of completing the assignment. To that end, I will emphasize over and over again
the importance of using existing capabilities (such as your own reusable code,
VB-provided controls, or even controls that you purchase).
In light of this optimize-your-time philosophy, I also believe that every VB
programmer should strive to become an expert in the following two areas:
Databases and Reporting. It's very common for applications to store data
and to provide that data in a printed format (by some estimates, 80% of all
VB applications use databases). And while this tutorial will discuss
various ways to perform these tasks, most programmers will find that the
capabilities of VB for creating/editing Access (a Microsoft product)
databases and VB's capabilities for reporting that data (as exemplified by
the Crystal Reports control or the newer built-in VB reporting features) are
the most effective tools you can use for increasing your effectiveness in
creating VB applications.
If you want to become a serious VB programmer, you must become an
expert in these areas. I'm not saying that Microsoft's built-in tools are the
only, or best, tools available for creating/editing databases and reporting
on them. What I am saying is that tools which provide similar functions
will be one of the most commonly used tools of those available to a
programmer and that any serious programmer must take the time to
develop strong skills with these tools.
One by-product programming strategy of my philosophy is that new lies
should not get too anxious to jump into the more advanced features of VB.
Take the time to learn the basics, and especially how to apply them with
ingenuity. Once you've exhausted the potential of the fundamentals is the
time to consider more advanced techniques. In my experience, over 90%
of my programs consist of fundamental programming techniques, while
only rarely am I compelled to dip into the more complex features that VB
has to offer.
Visual Basic History (VB3, VB4, VB5 and VB6)
Starting with VB5, Visual Basic became an exclusively 32-bit programming
language, suitable for programming only Win9X or NT systems. If you must
program for Win 3.x, then you'll have to drop back to either VB3 or VB4, both of
which are in pretty short supply. VB4 had the dual ability to support Win3.x as
well as Win9X/NT systems but my personal recommendation is that if you need

17

INTRODUCTION TO
VISUAL BASIC

NOTES

32-bit system support, go straight to VB6 and if 16-bit is your need then stick
with VB3.
The VB Learning Edition is the most affordable, and truth is that you can
do a lot with it, particularly if you use the Windows API to augment its
capabilities. However, in light of its better database features and its greater
variety of controls, I suggest you go straight to the Professional Edition if
at all possible. The price is steep, but it really does pay itself back in terms
of time savings. If you need the VB Enterprise edition then you should
have it paid for by the "Enterprise" which requires it. Individual
programmers generally do not need the Enterprise edition.
The Integrated Development Environment

One of the most significant changes in Visual Basic 6.0 is the
Integrated Development Environment (IDE). IDE is a term commonly
used in the programming world to describe the interface and environment
that we use to create our applications. It is called integrated because we
can access virtually all of the development tools that we need from one
screen called an interface. The IDE is also commonly referred to as
the design environment, or the program.
The Visual Basic IDE is made up of a number of components

 Menu Bar
 Tool Bar
 Project Explorer
 Properties window
 Form Layout Window
 Toolbox
 Form Designer
 Object Browser

In previous versions of Visual Basic, the IDE was designed as a
Single Document Interface (SDI). In a Single Document Interface, each
window is a free-floating window that is contained within a main window
and can move anywhere on the screen as long as Visual Basic is the
current application. But, in Visual Basic 6.0, the IDE is in a Multiple
Document Interface (MDI) format. In this format, the windows associated
with the project will stay within a single container known as the parent.
Code and form-based windows will stay within the main container form.
Figure 1-The Visual Basic startup dialog box

18

VISUAL BASIC
PROGRAMMING

NOTES

Menu Bar
This Menu Bar displays the commands that are required to build an
application. The main menu items have sub menu items that can be chosen
when needed. The toolbars in the menu bar provide quick access to the
commonly used commands and a button in the toolbar is clicked once to
carry out the action represented by it.
Toolbox
The Toolbox contains a set of controls that are used to place on a Form at
design time thereby creating the user interface area. Additional controls
can be included in the toolbox by using the Components menu item on the
Project menu. A Toolbox is represented in figure 2 shown below.
Figure 2 Toolbox windows with its controls available commonly.

Control Description

Pointer Provides a way to move and resize the
controls form

PictureBox
Displays icons/bitmaps and metafiles. It
displays text or acts as a visual container
for other controls.

TextBox Used to display message and enter text.

Frame Serves as a visual and functional
container for controls

CommandButton Used to carry out the specified action
when the user chooses it.

CheckBox Displays a True/False or Yes/No option.

19

INTRODUCTION TO
VISUAL BASIC

NOTES
OptionButton

OptionButton control which is a part of
an option group allows the user to select
only one option even it displays
mulitiple choices.

ListBox Displays a list of items from which a
user can select one.

ComboBox
Contains a TextBox and a ListBox. This
allows the user to select an ietm from the
dropdown ListBox, or to type in a
selection in the TextBox.

HScrollBar and
VScrollBar

These controls allow the user to select a
value within the specified range of
values

Timer Executes the timer events at specified
intervals of time

DriveListBox Displays the valid disk drives and allows
the user to select one of them.

DirListBox Allows the user to select the directories
and paths, which are displayed.

FileListBox Displays a set of files from which a user
can select the desired one.

Shape Used to add shape (rectangle, square or
circle) to a Form

Line Used to draw straight line to the Form

Image
used to display images such as icons,
bitmaps and metafiles. But less
capability than the PictureBox

Data Enables the use to connect to an existing
database and display information from it.

OLE
Used to link or embed an object, display
and manipulate data from other windows
based applications.

20

VISUAL BASIC
PROGRAMMING

NOTES

Label Displays a text that the user cannot
modify or interact with.

Project Explorer
Docked on the right side of the screen, just under the tollbar, is the Project
Explorer window. The Project Explorer as shown in in figure servres as a
quick reference to the various elements of a project
namely form, classes and modules. All of the object that make up the
application are packed in a project. A simple project will typically contain
one form, which is a window that is designed as part of a program's
interface. It is possible to develop any number of forms for use in a
program, although a program may consist of a single form. In addition to
forms, the Project Explorer window also lists code modules and classes.
Figure 3 Project Explorer

Properties Window
The Properties Window is docked under the Project Explorer window. The
Properties Window exposes the various characteristics of selected objects.
Each and every form in an application is considered an object. Now, each
object in Visual Basic has characteristics such as color and size. Other
characteristics affect not just the appearance of the object but the way it
behaves too. All these characteristics of an object are called its properties.
Thus, a form has properties and any controls placed on it will have
properties too. All of these properties are displayed in the Properties
Window.
Object Browser
The Object Browser allows us to browse through the various properties,
events and methods that are made available to us. It is accessed by
selecting Object Browser from the View menu or pressing the key F2. The
left column of the Object Browser lists the objects and classes that are
available in the projects that are opened and the controls that have been
referenced in them. It is possible for us to scroll through the list and select
the object or class that we wish to inspect. After an object is picked up
from the Classes list, we can see its members (properties, methods and
events) in the right column.

21

INTRODUCTION TO
VISUAL BASIC

NOTES

A property is represented by a small icon that has a hand holding a piece
of paper. Methods are denoted by little green blocks, while events are
denoted by yellow lightning bolt icon.
Object naming conversions of controls (prefix)

Form -frm
Label -lbl
TextBox -txt
CommandButton -cmd
CheckBox -chk
OptionButton -opt
ComboBox -cbo
ListBox -lst
Frame -fme
PictureBox -pic
Image -img
Shape -shp
Line -lin
HScrollBar -hsb
VScrollBar -vsb

All the controls in the ToolBox except the Pointer are objects in Visual
Basic. These objects have associated properties, methods and events.

Real world objects are loaded with properties. For example, a
flower is loaded certain color, shape and fragrance. Similarly
programming objects are loaded with properties. A property is a named
attribute of a programming object. Properties define the characteristics of
an object such as Size, Color etc. or sometimes the way in which it
behaves.
For example, a TextBox accepts properties such as Enabled, Font,
MultiLine, Text, Visible, Width, etc.

 Enables property allows the TextBox to be enabled or disabled at
run time depending on the condition set to True or False.

 Font property sets a particular font in the TextBox.
 MultiLine property allows the TextBox to accept and display

multiple lines at run time.
 Text property of the TextBox control sets a particular text in the

control.
 Visible property is used to hide the object at run time.
 Width property sets the TextBox to the desired width at design

time.
The properties that are discussed above are design-time properties that can
be set at the design time by selecting the Properties Window. But certain
properties cannot be set at design time. For example, the Current X and
Current Y properties of a Form cannot be set at the design time.

A method is an action that can be performed on objects. For
example, a cat is an object. Its properties might include long white hair,
blue eyes, 3 pounds weight etc. A complete definition of cat must only

22

VISUAL BASIC
PROGRAMMING

NOTES

encompass on its looks, but should also include a complete itemization of
its activities. Therefore, a cat's methods might be move, jump, play, breath
etc.
Similarly in object-oriented programming, a method is a connected or
built-in procedure, a block of code that can be invoked to impart some
action on a particular object. A method requires an object to provide them
with a context. For example, the word Move has no meaning in Visual
Basic, but the statement Text1.Move 700, 400 performs a very precise
action. The TextBox control has other associated methods such as Refresh,
SetFocus, etc.

 The Refresh method enforces a complete repaint of the control or a
Form.
For example, Text1.Refresh refreshes the TextBox.

 The Setfocus method moves the focus on the control.
For Example Text1.SetFocus sets the focus to TextBox control Text1.
Evolution of Visual Basic

 VB 1.0 was introduced in 1991. The approach for connecting the
programming language to the graphical user interface is derived
from a system called Tripod (sometimes also known as Ruby),
originally developed by Alan Cooper, which was further developed
by Cooper and his associates under contract to Microsoft.

Timeline of Visual Basic
 Visual Basic 1.0 (May 1991) was released for Windows.
 Visual Basic 1.0 for DOS was released in September 1992. The

language itself was not quite compatible with Visual Basic for
Windows, as it was actually the next version of Microsoft's DOS-
based BASIC compilers, Microsoft QuickBASIC compiler

 QuickBASIC and BASIC Professional Development System. The
interface was barely graphical, using extended ASCII characters to
simulate the appearance of a GUI.

 Visual Basic 2.0 was released in November 1992. The
programming environment was easier to use, and its speed was
improved.

 Visual Basic 3.0 was released in the summer of 1993 and came in
Standard and Professional versions. VB3 included a database
engine that could read and write Access databases.

 Visual Basic 4.0 (August 1995) was the first version that could
create 32-bit as well as 16-bit Windows programs. It also
introduced the ability to write classes in Visual Basic.

 With version 5.0 (February 1997), Microsoft released Visual Basic
exclusively for 32-bit versions of Windows. Programmers who
preferred to write 16-bit programs were able to import programs
written in Visual Basic 4.0 to Visual Basic 5.0, and Visual Basic
5.0 programs can easily be converted with Visual Basic 4.0. Visual
Basic 5.0 also introduced the ability to create custom user controls,

23

INTRODUCTION TO
VISUAL BASIC

NOTES

as well as the ability to compile to native Windows executable
code, speeding up runtime code execution.

 Visual Basic 6.0 (Mid 1998) improved in a number of areas,
including the ability to create web-based applications using Internet
Explorer. Visual Basic 6 is no longer supported.

Event Driven Programming
Visual Basic programs are built around events. Events are various things
that can happen in a program. This will become clearer when studied in
contrast to procedural programming. In procedural languages, an
application is written is executed by checking for the program logically
through the program statements, one after another. For a temporary phase,
the control may be transferred to some other point in a program. While in
an event driven application, the program statements are executed only
when a particular event calls a specific part of the code that is assigned to
the event.
Let us consider a TextBox control and a few of its associated events to
understand the concept of event driven programming. The TextBox control
supports various events such as Change, Click, MouseMove and many
more that will be listed in the Properties dropdown list in the code window
for the TextBox control. We will look into a few of them as given below.

 The code entered in the Change event fires when there is a change
in the contents of the TextBox

 The Click event fires when the TextBox control is clicked.
 The MouseMove event fires when the mouse is moved over the

TextBox
As explained above, several events are associated with different controls
and forms, some of the events being common to most of them and few
being specific to each control.
Visual Basic uses building blocks such as Variables, Data Types,
Procedures, Functions and Control Structures in its programming
environment. This section concentrates on the programming fundamentals
of Visual Basic with the blocks specified.
Modules
Code in Visual Basic is stored in the form of modules. The three kinds of
modules are Form Modules, Standard Modules and Class Modules. A
simple application may contain a single Form, and the code resides in that
Form module itself. As the application grows, additional Forms are added
and there may be a common code to be executed in several Forms. To
avoid the duplication of code, a separate module containing a procedure is
created that implements the common code. This is a standard Module.
Class module (.CLS filename extension) are the foundation of the object
oriented programming in Visual Basic. New objects can be created by
writing code in class modules. Each module can contain:
Declarations: May include constant, type, variable and DLL procedure
declarations.

24

VISUAL BASIC
PROGRAMMING

NOTES

Procedures: A sub function, or property procedure that contain pieces of
code that can be executed as a unit.
These are the rules to follow when naming elements in VB - variables,
constants, controls, procedures, and so on:

 A name must begin with a letter.
 May be as much as 255 characters long (but don't forget that

somebody has to type the stuff!).
 Must not contain a space or an embedded period or type-

declaration characters used to specify a data type; these are! # % $
& @

 Must not be a reserved word (that is part of the code, like Option,
for example)

 The dash, although legal, should be avoided because it may be
confused with the minus sign. Instead of First-name use First_name
or FirstName.

Some Features of Visual Basic
 Full set of objects - you 'draw' the application
 Lots of icons and pictures for your use
 Response to mouse and keyboard actions
 Clipboard and printer access
 Full array of mathematical, string handling and graphics functions
 Can handle fixed and dynamic variable and control arrays
 Sequential and random access file support
 Useful debugger and error-handling facilities
 Powerful database access tools
 ActiveX support
 Package & Deployment Wizard makes distributing your

applications simple
Visual Basic 6.0 versus Other Versions of Visual Basic
· The original Visual Basic for DOS and Visual Basic for Windows were
introduced in 1991.
· Visual Basic 3.0 (a vast improvement over previous versions) was
released in 1993.
· Visual Basic 4.0 released in late 1995 (added 32 bit application support).
· Visual Basic 5.0 released in late 1996. New environment, supported
creation of
ActiveX controls, deleted 16 bit application support.
· And, now Visual Basic 6.0 - some identified new features of Visual
Basic 6.0:

 Faster compiler
 New ActiveX data control object
 Allows database integration with wide variety of applications
 New data report designer
 New Package & Deployment Wizard
 Additional internet capabilities

25

INTRODUCTION TO
VISUAL BASIC

NOTES

16 Bits versus 32 Bits
· Applications built using the Visual Basic 3.0 and the 16 bit version of
Visual Basic 4.0 will run under Windows 3.1, Windows for Workgroups,
Windows NT, or Windows 95
· Applications built using the 32 bit version of Visual Basic 4.0, Visual
Basic 5.0 and Visual Basic 6.0 will only run with Windows 95 or
Windows NT (Version 3.5.1 or higher).
· In this class, we will use Visual Basic 6.0 under Windows 95,
recognizing such applications will not operate in 16 bit environments.
Review & Self Assessment Question
Q1-What do you mean by Visual Basic Language?
Q2-Describe Integrated Development Environment?
Q3-Write about Project explorer?
Q4-What is object browser?
Q5- What is Event Driven Programming?
Further Readings
Visual basic by David I Schneider
Visual basic by Steven Holzner
Visual basic by Bill Sheldon
Visual basic by Billy Holls
Visual basic by Rob Windsor

26

VISUAL BASIC
PROGRAMMING

NOTES

UNIT: 3- VISUAL BASIC
FUNDAMENTAL

Contents
 Variable

o Explicit
o Option Explicit

 Scope of Variable
 Module Level Variable
 Data Type
 Operator
 Review & Self Assessment Question
 Further Readings

Variable:
Variables are the memory locations which are used to store values
temporarily. A defined naming strategy has to be followed while naming a
variable. A variable name must begin with an alphabet letter and should
not exceed 255 characters. It must be unique within the same scope. It
should not contain any special character like %, &,!, #, @ or $.

There are many ways of declaring variables in Visual Basic.
Depending on where the variables are declared and how they are declared,
we can determine how they can be used by our application. The different
ways of declaring variables in Visual Basic are listed below and elucidated
in this section.
Explicit Declaration
Declaring a variable tells Visual Basic to reserve space in memory. It is
not must that a variable should be declared before using it. Automatically
whenever Visual Basic encounters a new variable, it assigns the default
variable type and value. This is called implicit declaration. Though this
type of declaration is easier for the user, to have more control over the
variables, it is advisable to declare them explicitly. The variables are
declared with a Dim statement to name the variable and its type. The As
type clause in the Dim statement allows to define the data type or object
type of the variable. This is called explicit declaration.
Syntax

Dim variable [As Type]
For example,

Dim strName As String
Dim intCounter As Integer

27

VISUAL BASIC
FUNDAMENTAL

NOTES

Using Option Explicit statement
It may be convenient to declare variables implicitly, but it can lead

to errors that may not be recognized at run time. Say, for example a
variable by name intcount is used implicitly and is assigned to a value. In
the next step, this field is incremented by 1 by the following statement

Intcount = Intcount + 1
This calculation will result in intcount yielding a value of 1 as intcount
would have been initialized to zero. This is because the intcount variable
has been typed as intcont in the right hand side of the second variable. But
Visual Basic does not see this as a mistake and considers it to be new
variable and therefore gives a wrong result.
In Visual Basic, to prevent errors of this nature, we can declare a variable
by adding the following statement to the general declaration section of the
Form.
Option Explicit
This forces the user to declare all the variables. The Option Explicit
statement checks in the module for usage of any undeclared variables and
reports an error to the user. The user can thus rectify the error on seeing
this error message.
The Option Explicit statement can be explicitly placed in the general
declaration section of each module using the following steps.

 Click Options item in the Tools menu
 Click the Editor tab in the Options dialog box
 Check Require Variable Declaration option and then click the OK button

Scope of variables
A variable is scoped to a procedure-level (local) or module-level variable
depending on how it is declared. The scope of a variable, procedure or
object determines which part of the code in our application are aware of
the variable's existence. A variable is declared in general declaration
section of e Form, and hence is available to all the procedures. Local
variables are recognized only in the procedure in which they are declared.
They can be declared with Dim and Static keywords. If we want a variable
to be available to all of the procedures within the same module, or to all
the procedures in an application, a variable is declared with broader scope.
Local Variables
A local variable is one that is declared inside a procedure. This variable is
only available to the code inside the procedure and can be declared using
the Dim statements as given below.

Dim sum As Integer

28

VISUAL BASIC
PROGRAMMING

NOTES

The local variables exist as long as the procedure in which they are
declared, is executing. Once a procedure is executed, the values of its local
variables are lost and the memory used by these variables is freed and can
be reclaimed. Variables that are declared with keyword Dim exist only as
long as the procedure is being executed.
Static Variables
Static variables are not reinitialized each time Visual Invokes a procedure
and therefore retains or preserves value even when a procedure ends. In
case we need to keep track of the number of times a command button in an
application is clicked, a static counter variable has to be declared. These
static variables are also ideal for making controls alternately visible or
invisible. A static variable is declared as given below.

Static intPermanent As Integer
Variables have a lifetime in addition to scope. The values in a module-
level and public variables are preserved for the lifetime of an application
whereas local variables declared with Dim exist only while the procedure
in which they are declared is still being executed. The value of a local
variable can be preserved using the Static keyword. The following
procedure calculates the running total by adding new values to the
previous values stored in the static variable value.

Function RunningTotal ()
Static Accumulate
Accumulate = Accumulate + num
RunningTotal = Accumulate
End Function

If the variable Accumulate was declared with Dim instead of static, the
previously accumulated values would not be preserved accross calls to the
procedure, and the procedure would return the same value with which it
was called. To make all variables in a procedure static, the Static keyword
is placed at the beginning of the procedure heading as given in the below
statement.

Static Function RunningTotal ()
Example
The following is an example of an event procedure for a CommandButton
that counts and displays the number of clicks made.

Private Sub Command1_Click ()
Static Counter As Integer
Counter = Counter + 1
Print Counter
End Sub

29

VISUAL BASIC
FUNDAMENTAL

NOTES

The first time we click the CommandButton, the Counter starts with its
default value of zero. Visual Basic then adds 1 to it and prints the result.
Module Level Variables
A module level variable is available to all the procedures in the module.
They are declared using the Public or the Private keyword. If you declare a
variable using a Private or a Dim statement in the declaration section of a
module—a standard BAS module, a form module, a class module, and so
on—you're creating a private module-level variable. Such variables are
visible only from within the module they belong to and can't be accessed
from the outside. In general, these variables are useful for sharing data
among procedures in the same module:
 In the declarative section of any module
Private LoginTime As Date ' A private module-level variable
Dim Login Password As String ' Another private module-level variable

You can also use the Public attribute for module-level variables,
for all module types except BAS modules. (Public variables in BAS
modules are global variables.) In this case, you're creating a strange beast:
a Public module-level variable that can be accessed by all procedures in
the module to share data and that also can be accessed from outside the
module. In this case, however, it's more appropriate to describe such a
variable as a property:
In the declarative section of Form1 module
Public CustomerName As String ' A Public property
You can access a module property as a regular variable from inside the
module and as a custom property from the outside:
From outside Form1 module...
Form1.CustomerName = "John Smith"
The lifetime of a module-level variable coincides with the lifetime of the
module itself. Private variables in standard BAS modules live for the entire
life of the application, even if they can be accessed only while Visual
Basic is executing code in that module. Variables in form and class
modules exist only when that module is loaded in memory. In other words,
while a form is active (but not necessarily visible to the user) all its
variables take some memory, and this memory is released only when the
form is completely unloaded from memory. The next time the form is re
created, Visual Basic reallocates memory for all variables and resets them
to their default values.
Public vs. Local Variables
A variable can have the same name and different scope. For example, we
can have a public variable named R and within a procedure we can declare

30

VISUAL BASIC
PROGRAMMING

NOTES

a local variable R. References to the name R within the procedure would
access the local variable and references to R outside the procedure would
access the public variable.
Constants
Constants are named storage locations in memory, the value of which does
not change during program Execution. They remain the same throughout
the program execution. When the user wants to use a value that never
changes, a constant can be declared and created. The Const statement is
used to create a constant. Constants can be declared in local, form, module
or global scope and can be public or private as for variables. Constants can
be declared as illustrated below.
Public Const gravity constant As Single = 9.81
Predefined Visual Basic Constants
The predefined constants can be used anywhere in the code in place of the
actual numeric values. This makes the code easier to read and write.
For example consider a statement that will set the window state of a form
to be maximized.
Form1.Windowstate = 2
The same task can be performed using a Visual Basic constant
Form1.WindowState = vb Maximized
Data Type
By default Visual Basic variables are of variant data types. The variant
data type can store numeric, date/time or string data. When a variable is
declared, a data type is supplied for it that determines the kind of data they
can store. The fundamental data types in Visual Basic including variant are
integer, long, single, double, string, currency, byte and Boolean. Visual
Basic supports a vast array of data types. Each data type has limits to the
kind of information and the minimum and maximum values it can hold. In
addition, some types can interchange with some other types. A list of
Visual Basic's simple data types are given below.
1. Numeric

Byte Store integer values in the range of 0 – 255

Integer Store integer values in the range of (-32,768) - (+
32,767)

Long Store integer values in the range of (- 2,147,483,468) -
(+ 2,147,483,468)

Single Store floating point value in the range of (-3.4x10-38) -
(+ 3.4x1038)

Double Store large floating value which exceeding the single
data type value

31

VISUAL BASIC
FUNDAMENTAL

NOTES

Currency store monetary values. It supports 4 digits to the right
of decimal point and 15 digits to the left

2. String
Use to store alphanumeric values. A variable length string can store
approximately 4 billion characters
3. Date
Use to store date and time values. A variable declared as date type can
store both date and time values and it can store date values 01/01/0100 up
to 12/31/9999
4. Boolean
Boolean data types hold either a true or false value. These are not stored as
numeric values and cannot be used as such. Values are internally stored as
-1 (True) and 0 (False) and any non-zero value is considered as true.
5. Variant
Stores any type of data and is the default Visual Basic data type. In Visual
Basic if we declare a variable without any data type by default the data
type is assigned as default.
Operators in Visual Basic
Arithmetical Operators
Operators Description Example Result

+ Add 5+5 10

- Substract 10-5 5

/ Divide 25/5 5

\ Integer Division 20\3 6

* Multiply 5*4 20

^ Exponent
(power of)

3^3 27

Mod Remainder of
division

20 Mod 6 2

& String
concatenation

"George"&"
"&"Bush"

"George Bush"

Relational Operators

Operators Description Example Result

> Greater than 10>8 True

< Less than 10<8 False

>= Greater than or 20>=10 True

32

VISUAL BASIC
PROGRAMMING

NOTES

equal to

<= Less than or
equal to 10<=20 True

<> Not Equal to 5<>4 True

= Equal to 5=7 False

Logical Operators
Operators Description

OR Operation will be true if either of the operands is
true

AND Operation will be true only if both the operands are
true

Review & Self Assessment Question
Q1- What is variable? Explain with example.
Q2-What do you mean by Scope of Variable?
Q3-What is data type? Explain it.
Q4-What do you mean by Module level variable.
Further Readings
Visual basic by David I Schneider
Visual basic by Steven Holzner
Visual basic by Bill Sheldon
Visual basic by Billy Holls
Visual basic by Rob Windsor

33

CONTROL STRUCTURE

NOTES
UNIT: 4 - CONTROL

STRUCTURE
Contents
 Control Statement
 Decision Making Statement

 Select Case Statement
 Looping Statement
 Review & Self Assessment Question
 Further Readings

Control Statement
Control Statements are used to control the flow of program's execution.
Visual Basic supports control structures such as if... Then, if...Then ...Else,
Select...Case, and Loop structures such as Do While...Loop, While...Wend,
For...Next etc method.
If...Then selection structure
The if...Then selection structure performs an indicated action only when
the condition is True; otherwise the action is skipped.
Syntax of the If...Then selection

If <condition> Then
statement
End If

Example
If average>75 Then
txtGrade.Text = "A"
End If

If...Then...Else selection structure
The If...Then...Else selection structure allows the programmer to specify
that a different action is to be performed when the condition is True than
when the condition is False.
Syntax of the If...Then...Else selection

If <condition > Then
statements
Else
statements
End If

Example :
If average>50 Then
txtGrade.Text = "Pass"
Else
txtGrade.Text = "Fail"
End If

34

VISUAL BASIC
PROGRAMMING

NOTES

Nested If...Then...Else selection structure
Nested If...Then...Else selection structures test for multiple cases by
placing If...Then...Else selection structures
insideIf...Then...Else structures.
Syntax of the Nested If...Then...Else selection structure
You can use Nested If either of the methods as shown above
Method 1

If < condition 1 > Then
statements
ElseIf < condition 2 > Then
statements
ElseIf < condition 3 > Then
statements
Else
Statements
End If

Method 2
If < condition 1 > Then
statements
Else
If < condition 2 > Then
statements
Else
If < condition 3 > Then
statements
Else
Statements
End If
End If
EndIf

Example
Assume you have to find the grade using nested if and display in a text box

If average > 75 Then
txtGrade.Text = "A"
ElseIf average > 65 Then
txtGrade.Text = "B"
ElseIf average > 55 Then
txtGrade.text = "C"
ElseIf average > 45 Then
txtGrade.Text = "S"
Else
txtGrade.Text = "F"
End If

35

CONTROL STRUCTURE

NOTES

Select...Case selection structure
Select...Case structure is an alternative to If...Then...ElseIf for selectively
executing a single block of statements from among multiple block of
statements. Select...case is more convenient to use than the If...Else...End
If. The following program block illustrate the working of Select...Case.
Syntax of the Select...Case selection structure

Select Case Index
Case 0
Statements
Case 1
Statements
End Select

Example:
Assume you have to find the grade using select...case and display in the
text box

Dim average as Integer
average = txtAverage.Text
Select Case average
Case 100 To 75
txtGrade.Text ="A"
Case 74 To 65
txtGrade.Text ="B"
Case 64 To 55
txtGrade.Text ="C"
Case 54 To 45
txtGrade.Text ="S"
Case 44 To 0
txtGrade.Text ="F"
Case Else
MsgBox "Invalid average marks"
End Select

Looping Statement
A repetition structure allows the programmer to that an action is to be
repeated until given condition is true.
Do While... Loop Statement
The Do While...Loop is used to execute statements until a certain
condition is met.
Example: The following Do Loop counts from 1 to 100.

Dim number As Integer
number = 1
Do While number <= 100
number = number + 1
Loop

A variable number is initialized to 1 and then the Do While Loop starts.
First, the condition is tested; if condition is True, then the statements are
executed. When it gets to the Loop it goes back to the Do and tests

36

VISUAL BASIC
PROGRAMMING

NOTES

condition again. If condition is False on the first pass, the statements are
never executed.
While... Wend Statement
A While...Wend statement behaves like the Do While...Loop statement.
Example: The following While...Wend counts from 1 to 100
Dim number As Integer
number = 1
While number <=100
number = number + 1
Wend
Do...Loop While Statement
The Do...Loop While statement first executes the statements and then test
the condition after each execution.
Example: The following program block illustrates the structure:
Dim number As Long
number = 0
Do
number = number + 1
Loop While number < 201
The programs execute the statements between Do and Loop While
structure in any case. Then it determines whether the counter is less than
501. If so, the program again executes the statements between Do and
Loop While else exits the Loop.
Do Until...Loop Statement
Unlike the Do While...Loop and While...Wend repetition structures,
the Do Until... Loop structure tests a condition for falsity. Statements in
the body of a Do Until...Loop are executed repeatedly as long as the loop-
continuation test evaluates to False.
An example for Do Until...Loop statement. The coding is typed inside the
click event of the command button

Dim number As Long
number=0
Do Until number > 1000
number = number + 1
Print number
Loop

Numbers between 1 to 1000 will be displayed on the form as soon as you
click on the command button.
The For...Next Loop
The For...Next Loop is another way to make loops in Visual
Basic. For...Next repetition structure handles all the details of counter-
controlled repetition.
Example: The following loop counts the numbers from 1 to 100:

Dim x As Integer
For x = 1 To 50

37

CONTROL STRUCTURE

NOTES

Print x
Next

In order to count the numbers from 1 to 50 in steps of 2, the following loop
can be used

For x = 1 To 50 Step 2
Print x
Next

The following loop counts numbers as 1, 3, 5, 7..etc
The above coding will display numbers vertically on the form. In order to
display numbers horizontally the following method can be used.

For x = 1 To 50
Print x & Space$ (2);
Next

To increase the space between the numbers increase the value inside the
brackets after the & Space$.
Following example is a For...Next repetition structure which is with the If
condition used.

Dim number As Integer
For number = 1 To 10
If number = 4 Then
Print "This is number 4"
Else
Print number
End If
Next

In the output instead of number 4 you will get the "This is number 4".
A For...Next loop condition can be terminated by an Exit For statement.
Consider the following statement block.

Dim x As Integer
For x = 1 To 10
Print x
If x = 5 Then
Print "The program exited at x=5"
Exit For
End If
Next

The preceding code increments the value of x by 1 until it reaches the
condition x = 5. The Exit For statement is executed and it terminates
the For...Next loop. The Following statement blocks
containing Do...While loop is terminated using Exit Do statement.

Dim x As Integer
Do While x < 10
Print x
x = x + 1
If x = 5 Then
Print "The program is exited at x=5"

38

VISUAL BASIC
PROGRAMMING

NOTES

Exit Do
End If
Loop

With...End With statement
When properties are set for objects or methods are called, a lot of coding is
included that acts on the same object. It is easier to read the code by
implementing the With...End With statement. Multiple properties can be
set and multiple methods can be called by using the With...End
With statement. The code is executed more quickly and efficiently as the
object is evaluated only once. The concept can be clearly understood with
following example.
With Text1
.Font.Size = 14
.Font.Bold = True
.ForeColor = vbRed
.Height = 230
.Text = "Hello World"
End With
In the above coding, the object Text1, which is a text box is evaluated only
once instead of every associated property or method. This makes the
coding simpler and efficient.
Review & Self Assessment Question
Q1-What is control statement?
Q2-What is while –wend statement? Explain with example?
Q3-Explain the For-Next loop? With example.
Q4-What are the differences between Entry Controlled loop and Exit
Controlled loop.
Further Readings
Visual basic by David I Schneider
Visual basic by Steven Holzner
Visual basic by Bill Sheldon
Visual basic by Billy Holls
Visual basic by Rob Windsor

39

WORKING WITH VISUAL
BASIC CONTROL

NOTES

UNIT: 5 - WORKING WITH
VISUAL BASIC CONTROL

Contents
 Control
 Label
 Command Button
 Text Box
 Picture Box
 Option Button
 List Box
 Combo Box
 Frame
 Check Box
 Review & Self Assessment Question
 Further Readings

Control
A control is an object that can be drawn on a Form object to enable or
enhance user interaction with an application. Controls have properties that
define aspects their appearance, such as position, size and colour, and
aspects of their behavior, such as their response to the user input.
There are three categories of controls in Visual Basic 6:

1. Intrinsic Controls: The IDE buttons and frame controls. They are inside
the Visual Basic .exe file. They are always in the toolbox.

2. ActiveX Controls: The ActiveX control exist as separate files with a .ocx
file name extension. These include controls that are available in all
editions of Visual Basic and those that are available only in the
Professional and Enterprise editions (such as Listview, Toolbar,
Animation, and Tabbed Dialog).

3. Insertable Objects (like the Excel Worksheet object; with a list of the
employees, or a Project Calendar object having the scheduling information
for a project.) These can be added to the toolbox, so they can be
considered controls.

1. Intrinsic Controls: The IDE buttons and frame controls. They are inside
the Visual Basic .exe file. They are always in the toolbox. Like this

40

VISUAL BASIC
PROGRAMMING

NOTES

Label:
Labels are one of the most commonly used controls in Visual Basic. They
are also the simplest to use. Label is used to display title, some text on the
screen. This is placed against the other controls such as TextBox, which is
used to accept some input from the user. It provides the message what data
to enter. Labels are drawn with a black font by default. However, you can
set the label’s text color to match your application’s color scheme.
1. Create a new project
2. Add two Labels from toolbox on the form.

3. Double click on Form to open code window and type the following code
Private Sub Form_Click()
Label1.Caption = “hello students”
Label2.Caption = “welcome”
End Sub

41

WORKING WITH VISUAL
BASIC CONTROL

NOTES

4. Use the File menu to save your work as Main.frm and (your intitials)
Project1.vbp
5. Press F5 to run

5. Click on the Form then

Command Button
Command button control is used to get the user’s response depending on
which some specific action can taken. Command buttons determine when
the user wants to do something such as exit the application or begin
printing. In almost every case, you will perform these tasks to add a
command button to an application For example you can see the “OK”
button when you click on “OK” button an event is fire and a msg box is
open.
1. Open Visual Basic 6.0 and create a newStandard EXE Project.
2. From Standard EXE project Dialogbox choose Standard EXE form.
3. Add Two Command Button from toolbox on the form.
4. From the properties window change the caption of the Command
Buttons

42

VISUAL BASIC
PROGRAMMING

NOTES

DESIGNING OF COMMMAND BUTTON:

5. After design the form open the code window and write code:

6. Then press f5 key for output
7. When you click Command Button1 whose caption is “hello” then a
msgbox show like below:

Text Box
Text Box control is used to accept some data from the user. A text box’s
purpose is to allow the user to input text information to be used by the
program. User can type in the textbox that value can be accessed in any
procedure by referring to the text property of the text box control.A typical
text box is a rectangle of any size Text boxes usually display a text cursor.
Text Box controls, which have a great many properties and events, are also
among the most complex intrinsic controls.
1. Open Visual Basic 6.0 and create a newStandard EXE Project.
2. From Standard EXE project Dialogbox choose Standard EXE form.
3. Add two Text Box from toolbox on the form.

43

WORKING WITH VISUAL
BASIC CONTROL

NOTES

4. Add one Command Button from toolbox on the form.
5. Change the caption of Command Button from Properties Window
6. When you design the form it is look like below

7 Then open the code window and write code :

9. Use the File menu to save your work as Main.frm and (your intitials)
Project1.vbp
8. After coding press <F5> function key to run the application.
9. Enter the digit in TextBox1 and press Command Button.

Radio Button /Option Button
A Radio Button is also known as Option button. An Option button is a
round radio button that you select to turn an option on or off. This button is
used where you have only one option to choose like yes or no, male or
female and married or unmarried.
1. Open Visual Basic 6.0 and create a newStandard EXE Project.
2. From Standard EXE project Dialogbox choose Standard EXE form.
3. Add two Radio Button from toolbox on the form.
4. Use the properties window to change the caption of Radio Button
“male” and “female”.

44

VISUAL BASIC
PROGRAMMING

NOTES

5. Double click on Radio button and enter the following code

6.Press <F5> to run.

7.When you click on male button then

45

WORKING WITH VISUAL
BASIC CONTROL

NOTES

ComboBox
The ComboBox is used to display a list incompact form. And so this
control consume less space and still can have all the elements of list in it.
List elements can be added both at design time and at run time.
1. Open Visual Basic 6.0 and create a newStandard EXE Project.
2. From Standard EXE project Dialogbox choose Standard EXE form.
3. Add one Combo Box and Command Button from toolbox on the
form.
4. Change the caption of command button.

5. Then add code in code window. Following is an example to add item to
a combo box. The code is typed in the Form_Load event.

6. Use the File menu to save your work as Main.frm and (your intitials)
Project1.vbp
7.Use <f5> key to run the program.

46

VISUAL BASIC
PROGRAMMING

NOTES

List Box
The List control is used to present a list of items where the user can click
and select the items from the list. In order to add items to the list, we can
use the AddItem method.
1. Start Visual Basic and pick “Standard Exe” from the list of new
projects.
2. Go to the properties page (on the right) and find the caption property
for the main form (Form1).
3. Add a List control to the form by clicking the List tool and then drawing
on the form.

4. Double click the ListBox . This will bring up the code-view Now,
double window. Type in the following code into the List1_Click()
subroutine shell that’s generated for you:

47

WORKING WITH VISUAL
BASIC CONTROL

NOTES

5. At this point, press <F5> key to run the program and select the option
to see what happens.

6. When you select red option from Listbox then form’s colour is change
and shows a message
Program of Window State In Visual Basic
1. Start Visual Basic and pick “Standard Exe” from the list of new
projects.
2. Go to the properties window (on the right) and find
the caption property for the main form (Form1).
3. Add four Button to the form by clicking the by clicking the tool and
then drawing on the form.
4. Go to the properties window and change the caption property for
max(Button1),mini(Button2),restore(Button3),exit(Button4).

4. Double click the max button . This will bring up the code-view Now,
double window. Type in the following code into
theCommand1_Click()subroutine shell that’s generated for you:

48

VISUAL BASIC
PROGRAMMING

NOTES

5. At this point, press <f5> key to run the program and select the option to
see what happens

6. Click on max Button.
 DriveListBox, DirListBox and FileListBox controls

Three of the controls on the ToolBox let you access the computer’s
file system. They are DriveListBox, DirListBox and FileListBox controls .
The Drive ListBox is used to display a list of drives available in your
computer. When you place this control into the form and run the
program,you will be able to select different drive from your computer.
The DirListBox is Directory ListBox is used to display the list of
directories or folder in a selected drive.When you place this control into

49

WORKING WITH VISUAL
BASIC CONTROL

NOTES

the form and run the program, you will be able to select different
directories from a selected drive in your computer.
The FileListBox is used to display the list of files in a selected directory
or folder.When you place this control into the fo form and run the
program, you will be able to a list of files in a selected directory.
1. Start Visual Basic and pick “Standard Exe” from the list of new
projects.
2. A form1 container is open.
3. Add DriveListBox,DirListBox and FileListBox from the toolbox.

4. Double click on Drive control.Code window is open. Write code here.
5. After you select Dir1 object from object drop down list.Write code here.

6.Press <f5> key to run the program and select the option to see what
happens.

50

VISUAL BASIC
PROGRAMMING

NOTES

The ScrollBar
The ScrollBar is a commonly used control, which enables the user to select
a value by positioning it at the desired location. A scroll bar control
consists of a bar with arrows at each end. Visual basic provides two types
of scroll bars-Horizontal scroll bar and vertical scroll bar.To the right of
client area is vertical scroll bar, which is a common component of
windows that display text .If there is too much text to fit in the window at
once,scroll bars enable the user to move around within the document to
look at some subsection of the whole. At the bottom of the window is a
horizontal scroll bar that scrolls the text in the client area horizontally. To
the right side of the horizontal scroll bar is the window’s sizing handle.
1. Start Visual Basic and pick “Standard Exe” from the list of new
projects.
2. A form1 container is open.
3. Add Scrollbar and TextBox1 tool from the toolbox.

4. Double click on scrollbar control. Code window is open. Write code
here.

51

WORKING WITH VISUAL
BASIC CONTROL

NOTES

5. After you select Form1 object from object drop down list and select the
procedure Load() from the procedure window .Write code here.

6.Press <f5> key to run the program .
7. Scroll the scrollbox from scroll arrow.Its range isshown in textbox1.

Pointer Control
Pointer control is used to resize and position a control. When you’re
drawing controls on a form, you don’t have to be exact. It’s very easy to
make them bigger or smaller, and to put them in a different spot on the
form.
1. In the Toolbox, select the Pointer tool (if it isn’t already selected).
2. On your form, select the control you want to resize.

52

VISUAL BASIC
PROGRAMMING

NOTES

3. Grab a sizing handle with the mouse by moving the pointer over it and
then holding down the left mouse button. You know when you’re over the
sizing handle because the mouse pointer turns into a double-sided arrow.
4. While holding down the mouse button, notice that a box appears . The
box shows you what the size of the control will be. When it’s the right
size, release the mouse button.
5. You can resize a control by dragging a sizing handle.

OLE control in Visual Basic
Insertable Objects (like the Excel Worksheet object; with a list of the
employees, or a Project Calendar object having the scheduling information
for a project.) These can be added to the toolbox, so they can be
considered controls.
OLE (Object Linking and Embedding) is a means to interchange data
between applications. One of the primary uses of the OLE
Container control was to embed Word documents or Excel spreadsheets
in a form. This is the control to use when you want to link or embed an
object into your Visual Basic application.
1. From the Windows Start menu, choose Programs, Microsoft Visual
Studio 6.0, and then Microsoft Visual Basic 6.0.
2. Click the OLE tool form toolbox.

53

WORKING WITH VISUAL
BASIC CONTROL

NOTES

3. Double clicking the OLE control on your form will activate the object’s
application. Visual Basic also allows you to activate the object from your
code. A Insert dialog box is open. There are two option create new or
create from file. You select it as you want.
4. First we create new Object.
5. Select Create New and Microsoft office Excel Chart from the Object
Type list.

6. Creating a Excel chart will allow you to access the Excel application to
define the chart.
7. Select the Excel chart.

54

VISUAL BASIC
PROGRAMMING

NOTES

8. Run your application. Double click on the OLE control and use it in
your project as you want.
Second is linking to an existing object for this:
1. Add a OLE to the form.
2. Select Create from File and use the Browse button to find the Word
document.
3. Select Link and click on OK.

4. This Word document page has been sized so that it will fit onto a form.
Change the SizeMode property of the OLE control to Stretch.
5. Run your application. Double click the OLE control to see that Word is
activated with the selected document opened.
6. Close Word and stop your application.
Checkbox
A checkbox control is rather similar to an option button. The value
property of both the controls is tested to check the current state. Check
boxes are not mutually exclusive. A check box is a control that allows the
user to set or change the value of an item as true or false. The control
appears as a small square. When this empty square is clicked, it gets
marked by a check symbol. These two states control the checkbox as
checked or unchecked. The Checkbox List control is a single control that
acts as a parent control for a collection of check-box list items. When a
check box appears in a group with other similar controls, it assumes a
completely independent behavior and it must be implemented as its own
entity. This means that clicking a check box has no influence on the other
controls.
1. Open Visual Basic 6.0 and create a new Standard EXE Project.
2. From Standard EXE project Dialogbox choose Standard EXE form.
2. Add one checkbox from toolbox on the form.

55

WORKING WITH VISUAL
BASIC CONTROL

NOTES

3. Double click on Checkbox to opencode window and type the
followingcode
Private Sub Check1_Click()
If Check1.Value = 1 Then
MsgBox “red”
Else
MsgBox “blue”
End If
End Sub

4. Press F5 to run

5. When you select the checkbox output is:

56

VISUAL BASIC
PROGRAMMING

NOTES

Frame:
A frame is an object that provide a visual a functional container for
controls. It is an object that has solid border around it and a caption at the
top. You can not just drag an option button over a frame to add it to the
frame. Instead; you must actually draw the option button on the frame.
This means you cannot draw an option button in a frame using the shortcut
of double-clicking the control in the toolbox.
Image Control
Image Control is another control that handles images and pictures. It
functions almost identically to the picture box.However, there is one major
difference, the image in an Image Box is stretchable, which means it can
be resresized.This feature is not available in the Picture Box. Similar to the
Picture Box, it can also use the LoadPicture method to load the picture.
For example, the statement loads the picture “winter.jpg”: into the image
box.
1. Start -> program-> Microsoft Visual Studio 6.0 -> Microsoft Visual
Basic 6.0
2. Visual Basic load and appears on your screen.
3. Choose Standard Exe. From dialog box.
4. Add Frame1, Command1 button, one Picture control and one Image
control from toolbox place left side on the visual basic screen.
5. Add two option button option1 and option2.
6. Set the properties of Frame1, Command1 button, Picture control and
Image control from the properties window.

7. After you click on code window button from the project window. Code
window is open.

57

WORKING WITH VISUAL
BASIC CONTROL

NOTES

8. First you select the object from object drop down list writ code here.As
shown in figure below.

9. When the form is load option1 and option2 is false. Click on option1
button the Image is show in Image1 Box and when you click on option2
Button then picture is show in Picture1 Box.

10.When you click on
picture1 then message box is show.

10. When you click on Command1 Button then form is exit.
Picture Box
It control is the most powerful and complex items in the Visual Basic .The
picture box is one of the controls that used to handle graphics. you can
load a picture at design phase by clicking on the picture item in the

58

VISUAL BASIC
PROGRAMMING

NOTES

properties window and select the picture from the selected folder .You can
also load the picture at runtime using the LoadPicture metoh.For example,
the statement will load the picture “abc.jpg” into the picture box.

1. Start -> program-> Microsoft Visual Studio 6.0 -> Microsoft
Visual Basic 6.0

2. Visual Basic load and appears on your screen.
3. Choose Standard Exe. From dialog box.
4. Add Picture1 control ReRand four Button command1, command2,

command3, command4 from the toolbox on the form.
5. Set the caption property of command1

(down),command2(top),command3(right),command4(left).

6. Click on code window from project window. Code window is open
select the object one by one from the object window and write the code
here as shown in figure.

7. When the coding is complete then you run the program.
8. To run the program press <f5>.output is:

59

WORKING WITH VISUAL
BASIC CONTROL

NOTES

9. When you click on top button picture move on top, if click on down
picture move in down, if click on left picture move in left, if click on right
picture move in right.
Timer control
The Timer control is used to fire an event at specified intervals. The code
you want to execute is placed in this event. This control has no methods,
only one event (Time event) and seven properties. The control is invisible
at run time.
1. Start -> program-> Microsoft Visual Studio 6.0 -> Microsoft Visual
Basic 6.0
2. Visual Basic load and appears on your screen.
3. Choose Standard Exe. From dialog box.
4. A form1 container is open.
5. Add one Label1, Command1 button and Timer1 control on the
form1.

6. Set the time property “2000” for Timer1 control.
7. Double click on timer control. The code window is open. Write the code
here.

60

VISUAL BASIC
PROGRAMMING

NOTES

8. Run your program. Click “Debug” from the menu bar. Click “Start”
from the drop down menu. Alternatively, you can press <F5> on your
keyboard.Output is:

9. Time is start when you rum the program.when time is complete the
caption of Label1 and command1 button is change.As shown in Figure
below:

Tool-tip
A tool-tip is a small box that is displayed at the mouse location
when overing above the control .The tool-tip is set for a brief period of
time, it provides a help prompt to the user. A tooltip is the first line of help
for a confused user. An example of its use would be on an invalid entry
into a form and when the user runs their mouse over control you would use
a tool-tip to tell them why we use this control or about the control.
1. Start Visual Basic and pick “Standard Exe” from the of new projects.
You’ll land in the screen we saw below.

61

WORKING WITH VISUAL
BASIC CONTROL

NOTES

2. Add the Coomand1 button, Checkbox1, Textbox1 and Label1 on the
Form1 container.

3. Double click on Form1 container. The code window is open. Write code
here.

62

VISUAL BASIC
PROGRAMMING

NOTES

4. When you write the code and type command1 and type the
dot(Command1.) a popup menu is open select the tooltip option from the
popup menu as shown in figure:

5. Press <f5> key to run the program and when you point out the cursor on
the button to see what happens.
6. A tooltip is shown:

Review & Self Assessment Question
Q1-What is control? Explain with its type.
Q2-Explain Command Button with example?
Q3-What are the differences between Image box and Picture box?
Q4-What is Frame? Explain with example.
 Further Readings
Visual basic by David I Schneider
Visual basic by Steven Holzner
Visual basic by Bill Sheldon
Visual basic by Billy Holls
Visual basic by Rob Windsor

63

CREATING MENU, POP
UPS, TOOLBARS AND

DIALOG BOX

NOTES

UNIT: 6-CREATING MENU,
POP UPS, TOOLBARS AND

DIALOG BOX
Contents
 Steps to Create Menus
 Steps to Create POP UP Menu
 Review & Self Assessment Question
 Further Readings

The File menu, shown below, will have the following level-two items
below it: New, Open, Save, Save As, Print, and Exit. Note that separator
bars appear above the Save, Print, and Exit items.

The Help menu contains just one level-two item below it, about.

To build a menu for use with your VB program, you use the Menu Editor,
which appears as an icon in the toolbar of the VB IDE. It is the circled
item in the screen shot below:

64

VISUAL BASIC
PROGRAMMING

NOTES

Alternatively, you can invoke the Menu Editor from the Tools menu item
as shown below:

To build the menu described above, perform the following steps.
1. Start a new VB project and invoke the Menu Editor using either method

shown above (click the Menu Editor toolbar icon or select the Menu
Editor option from the Tools menu). The Menu Editor screen appears,
as shown below:

2. For "Caption", type &File (by placing the ampersand to the left of the

"F", we establish "F" as an access key for the File item it enables the
user to drop down the File menu by keying "Alt+F" on the keyboard in
addition to clicking the "File" item with the mouse).

For "Name", type mnuFile.

65

CREATING MENU, POP
UPS, TOOLBARS AND

DIALOG BOX

NOTES

Your Menu Editor screen should look like this:

Click the Next button.
3. Click the "right-arrow" button (shown circled below). A ellipsis (...) will
appear as the next item in the menu list, indicating that this item is a level-
two item (below "File").

For "Caption", type &New; for "Name", type mnuNew, and for "Shortcut",
select Ctrl+N. By specifying a shortcut, you allow the user to access the
associated menu item by pressing that key combination. So here, you are
providing the user three ways of invoking the "New" function: (1) clicking
File, then clicking New on the menu; (2) keying Alt+F,N (because we set
up an access key for "N" by placing an ampersand to left of "N" in
"New"); or (3) keying Ctrl+N. At this point, your Menu Editor screen
should look like this:

66

VISUAL BASIC
PROGRAMMING

NOTES

Click the Next button.
4. For "Caption", type &Open; for "Name", type mnuOpen, and for

"Shortcut", select Ctrl+O. Your Menu Editor screen should look
like this:

Click the Next button.
5. For "Caption", type - (a hyphen), and for "Name", type mnuFileBar1. A
single hyphen as the Caption for a menu item tells VB to create a separator
bar at that location. Your Menu Editor screen should look like this:

Click the Next button.

67

CREATING MENU, POP
UPS, TOOLBARS AND

DIALOG BOX

NOTES

6. For "Caption", type &Save; for "Name", type mnuSave, and for
"Shortcut", select Ctrl+S. Your Menu Editor screen should look like this:

Click the Next button.
7. For "Caption", type Save &As ..., and for "Name", type mnuSaveAs.
Your Menu Editor screen should look like this:

Click the Next button.
8. For "Caption", type -, and for "Name", type mnuFileBar2. Your Menu
Editor screen should look like this:

68

VISUAL BASIC
PROGRAMMING

NOTES

Click the Next button.
9. For "Caption", type &Print;for "Name", type mnuPrint; and for
"Shortcut", select Ctrl+P. Your Menu Editor screen should look like this:

Click the Next button.
10. For "Caption", type -; and for "Name", type mnuFileBar3. Your Menu
Editor screen should look like this:

Click the Next button.
11. For "Caption", type E&xit, and for "Name", type mnuExit. Your Menu
Editor screen should look like this:

69

CREATING MENU, POP
UPS, TOOLBARS AND

DIALOG BOX

NOTES

Click the Next button.
12. Click the "left-arrow" button (shown circled below). The ellipsis (...)
no longer appears, meaning we are back to the top-level items.

For "Caption", type &Help; and for "Name", type mnuHelp. Your Menu
Editor screen should look like this:

70

VISUAL BASIC
PROGRAMMING

NOTES

Click the Next button.
13. Click the "right-arrow" button to create a level-two item below "Help".
For "Caption", type & about; and for "Name", type mnuAbout. Your Menu
Editor screen should look like this:

14. At this point, we are done creating our menu entries, so click
the OK button. That will dismiss the menu editor and return focus to the
VB IDE.
15. Back in the VB IDE, your form will now have a menu, based on what
you have set up in the Menu Editor. If you click on a top-level menu item
(File for example), the level-two menu will drop down:

16. Click on the New menu item. The code window for
the mnuFileNew_Click event opens, as shown below.
Note: Click is the only event that a menu item can respond to.

71

CREATING MENU, POP
UPS, TOOLBARS AND

DIALOG BOX

NOTES

In thePlace mnuFileNew_Click event, place the code you want to execute
when the user clicks the New menu item. Since this is just a demo, we will
place a simple MsgBox statement in the event procedure:
MsgBox "Code for 'New' goes here.", vbInformation, "Menu Demo"

17. Code similar MsgBox statements for the Open, Save, Save As,

and Print menu items:
Private Sub mnuFileOpen_Click()
MsgBox "Code for 'Open' goes here.", vbInformation, "Menu
Demo"
End Sub
Private Sub mnuFileSave_Click()
MsgBox "Code for 'Save' goes here.", vbInformation, "Menu
Demo"
End Sub
Private Sub mnuFileSaveAs_Click()
MsgBox "Code for 'Save As' goes here.", vbInformation, "Menu
Demo"
End Sub
Private Sub mnuFilePrint_Click()
MsgBox "Code for 'Print' goes here.", vbInformation, "Menu
Demo"
End Sub

18. For the Exit menu item Click event, code the statement Unload Me.
Private Sub mnuFileExit_Click()
Unload Me
End Sub

19. For the About menu item Click event, code as shown below:
Private Sub mnuHelpAbout_Click()
MsgBox "Menu Demo" & vbCrLf _
& "Copyright " & Chr$(169) & " 2004 thevbprogrammer.com", ,
"About"
End Sub

20. Run the program. Note how the code executes when you click on the
various menu items. Also test the use of the access keys (e.g., Alt+F, N)
and shortcut keys (e.g., Ctrl-O).

72

VISUAL BASIC
PROGRAMMING

NOTES

21. save the program and exit VB.
EXAMPLE 2:
This example shows you how to create a popup menu (sometimes called
a context menu or a right-click menu).
1. Start a new VB project and place a label on the form. Name the
label lblTestText. Set the Caption to Test Text.

2. Open the Menu Editor, and create a top-level item with a Caption value
of PopUpFormat and the NamemnuPopuUpFormat. Also
importantly uncheck the visible checkbox (see the circled item below). In
order for a menu to be a pop-up menu, it must be invisible.

73

CREATING MENU, POP
UPS, TOOLBARS AND

DIALOG BOX

NOTES

3. Create the following level-two menu items below the PopUpFormat top-
level menu. (When creating these level-two items, keep the Visible box
checked.)

Caption Name
Bold mnuBold
Italic mnuItalic
Underline mnuUnderline
- (hyphen) mnuFormatSep
Cancel mnuCancel

When done, your Menu Editor should look like this:

4. Click OK to save your changes. Note: When you return to the IDE, you
will NOT see this menu on the form (remember it's a pop-up menu,
and it will only be visible when invoked through code).

5. Code the lblTestText_MouseDown event as shown below. Note that
the Button parameter is tested forvbRightButton as is conventional,
we only want to pop up the menu if the user right-clicks on the
label. If the user clicks the right mouse button,
the PopupMenu statement is executed. It is this statement that
makes the pop-up menu appear.
Private Sub lblTestText_MouseDown(Button As Integer, _
Shift As Integer, _
X As Single, _
Y As Single)
If Button = vbRightButton Then
PopupMenu mnuPopUpFormat, vbPopupMenuRightButton
End If
End Sub

74

VISUAL BASIC
PROGRAMMING

NOTES

The full syntax for the PopupMenu method, from MSDN, is:
object.PopupMenu menuname, flags, x, y, boldcommand
The PopupMenu method syntax has these parts:

Part Description
object Optional. An object expression that evaluates to an object

in the Applies To list. If object is omitted, the form with
the focus is assumed to be object.

Menunam
e

Required. The name of the pop-up menu to be displayed.
The specified menu must have at least one submenu.

Flags Optional. A value or constant that specifies the location
and behavior of a pop-up menu, described as follows:
Note: To specify both a "location" constant and a
"behavior" constant, add the two values together. For
example:
PopupMenu MyMenu, vbPopupMenuRightAlign +
vbPopupMenuRightButton

X Optional. Specifies the x-coordinate where the pop-up
menu is displayed. If omitted, the mouse coordinate is
used.

Y Optional. Specifies the y-coordinate where the pop-up
menu is displayed. If omitted, the mouse coordinate is
used.

boldcomm
and

Optional. Specifies the name of a menu control in the pop-
up menu to display its caption in bold text. If omitted, no
controls in the pop-up menu appear in bold.

5. Code the mnuBold_Click event as shown below. Note that
the Checked property of the menu item is used. When set to True, this
causes a checkmark to appear to the left of the menu item. The Checked
property is typically used as a toggle.

Private Sub mnuBold_Click()
If mnuBold.Checked Then
lblTestText.FontBold = False
mnuBold.Checked = False
Else
lblTestText.FontBold = True
mnuBold.Checked = True
End If
End Sub

6. Code the mnuItalic_Click and mnuUnderline_Click events in a similar
fashion as shown below.
Private Sub mnuItalic_Click()
If mnuItalic.Checked Then
lblTestText.FontItalic = False
mnuItalic.Checked = False
Else

75

CREATING MENU, POP
UPS, TOOLBARS AND

DIALOG BOX

NOTES

lblTestText.FontItalic = True
mnuItalic.Checked = True
End If
End Sub
Private Sub mnuUnderline_Click()
If mnuUnderline.Checked Then
lblTestText.FontUnderline = False
mnuUnderline.Checked = False
Else
lblTestText.FontUnderline = True
mnuUnderline.Checked = True
End If
End Sub

7. Run the program and check out the various options you have coded.

Review & Self Assessment Question
Q1-Write the steps to create the menu using menu editor option?
Q2- What do you mean by popup Menu?
Further Readings
Visual basic by David I Schneider
Visual basic by Steven Holzner
Visual basic by Bill Sheldon
Visual basic by Billy Holls
Visual basic by Rob Windsor

76

VISUAL BASIC
PROGRAMMING

NOTES

UNIT: 7 - PROCEDURES
& FUNCTION

Contents
 Procedure
 Sub Procedure
 Event Procedure
 Function Procedure
 Property Procedure
 Review & Self Assessment Question
 Further Readings

Visual Basic offers different types of procedures to execute small sections
of coding in applications. The various procedures are elucidated in details
in this section. Visual Basic programs can be broken into smaller logical
components called Procedures. Procedures are useful for condensing
repeated operations such as the frequently used calculations, text and
control manipulation etc. The benefits of using procedures in programming
are:
It is easier to debug a program a program with procedures, which breaks a
program into discrete logical limits.
Procedures used in one program can act as building blocks for other
programs with slight modifications.
A Procedure can be Sub, Function or Property Procedure.
Sub Procedures
A sub procedure can be placed in standard, class and form modules. Each
time the procedure is called, the statements between Sub and End Sub are
executed. The syntax for a sub procedure is as follows:
[Private | Public] [Static] Sub Procedure name [(arglist)]
[statements]
End Sub
Arg list is a list of argument names separated by commas. Each argument
acts like a variable in the procedure. There are two types of Sub
Procedures namely general procedures and event procedures.
Event Procedures
An event procedure is a procedure block that contains the control's actual
name, an underscore (_), and the event name. The following syntax
represents the event procedure for a Form Load event.
Private Sub Form_Load()
....statement block..
End Sub
Event Procedures acquire the declarations as Private by default.
General Procedures
A general procedure is declared when several event procedures perform
the same actions. It is a good programming practice to write common

Formatted:
Centered, Indent:
Left: 1", First
line: 0", Border:
Top: (Single solid
line, Auto, 0.5 pt
Line width),
Bottom: (Single
solid line, Auto,
0.5 pt Line width)

77

PROCEDURE &
FUNCTIONS

NOTES

statements in a separate procedure (general procedure) and then call them
in the event procedure.
In order to add General procedure:

 The Code window is opened for the module to which the procedure
is to be added.

 The Add Procedure option is chosen from the Tools menu, which
opens an Add Procedure dialog box as shown in the figure given
below.

 The name of the procedure is typed in the Name textbox
 Under Type, Sub is selected to create a Sub procedure, Function to

create a Function procedure or Property to create a Property
procedure.

 Under Scope, Public is selected to create a procedure that can be
invoked outside the module, or Private to create a procedure that
can be invoked only from within the modulez

We can also create a new procedure in the current module by typing Sub
ProcedureName, Function ProcedureName, or Property ProcedureName in
the Code window. A Function procedure returns a value and a Sub
Procedure does not return a value.
Function Procedures
Functions are like sub procedures, except they return a value to the calling
procedure. They are especially useful for taking one or more pieces of
data, called arguments and performing some tasks with them. Then the
function returns a value that indicates the results of the tasks complete
within the function.
The following function procedure calculates the third side or hypotenuse
of a right triangle, where A and B are the other two sides. It takes two
arguments A and B (of data type Double) and finally returns the results.
Function Hypotenuse (A As Double, B As Double) As Double
Hypotenuse = sqr (A^2 + B^2)
End Function
The above function procedure is written in the general declarations section
of the Code window. A function can also be written by selecting the Add
Procedure dialog box from the Tools menu and by choosing the required
scope and type.
Property Procedures
A property procedure is used to create and manipulate custom properties.
It is used to create read only properties for Forms, Standard modules and
Class modules. Visual Basic provides three kind of property procedures-
Property Let procedure that sets the value of a property, Property Get
procedure that returns the value of a property, and Property Set procedure
that sets the references to an object.

78

VISUAL BASIC
PROGRAMMING

NOTES

Review & Self Assessment Question
Q1-What is procedure?
Q2-What are the differences between procedure & function?
Q3-What do you mean by property procedure?
Q4-Write about sub procedure with example?
Further Readings
Visual basic by David I Schneider
Visual basic by Steven Holzner
Visual basic by Bill Sheldon
Visual basic by Billy Holls
Visual basic by Rob Windsor

79

ARRAYS IN
VISUAL BASIC

NOTES

UNIT: 8 - ARRAYS IN VISUAL
BASIC

Contents
 Introduction to Array
 Declaring Array
 Multidimensional Array
 Dynamic Array
 Control Array
 Review & Self Assessment Question
 Further Readings

Introduction to Array
An array is a consecutive group of memory locations that all have the
same name and the same type. To refer to a particular location or element
in the array, we specify the array name and the array element position
number.

The Individual elements of an array are identified using an index.
Arrays have upper and lower bounds and the elements have to lie within
those bounds. Each index number in an array is allocated individual
memory space and therefore users must evade declaring arrays of larger
size than required. We can declare an array of any of the basic data types
including variant, user-defined types and object variables. The individual
elements of an array are all of the same data type.
Declaring arrays
Arrays occupy space in memory. The programmer specifies the array type
and the number of elements required by the array so that the compiler may
reserve the appropriate amount of memory. Arrays may be declared as
Public (in a code module), module or local. Module arrays are declared in
the general declarations using keyword Dim or Private. Local arrays are
declared in a procedure using Dim or Static. Array must be declared
explicitly with keyword "As".
The Syntax for Declaring an array is :
[Dim | Private|Public|Static|Global] array name ([lower bound to]
upperbound[,….][as data type].
There are two types of arrays in Visual Basic namely:

Fixed-size array: The size of array always remains the same-size
doesn't change during the program execution.

Dynamic array: The size of the array can be changed at the run time-
size changes during the program execution.
Fixed-sized Arrays

When an upper bound is specified in the declaration, a Fixed-array
is created. The upper limit should always be within the range of long data
type.

80

VISUAL BASIC
PROGRAMMING

NOTES

Declaring a fixed-array
Dim numbers (5) As Integer

In the above illustration, numbers is the name of the array, and the number
6 included in the parentheses is the upper limit of the array. The above
declaration creates an array with 6 elements, with index numbers running
from 0 to 5.
If we want to specify the lower limit, then the parentheses should include
both the lower and upper limit along with the To keyword. An example for
this is given below.
Dim numbers (1 To 6) As Integer
In the above statement, an array of 10 elements is declared but with
indexes running from 1 to 6.
A public array can be declared using the keyword Public instead of Dim as
shown below.
Public numbers (5) As Integer
Multidimensional Arrays
Arrays can have multiple dimensions. A common use of multidimensional
arrays is to represent tables of values consisting of information arranged in
rows and columns. To identify a particular table element, we must specify
two indexes: The first (by convention) identifies the element's row and the
second (by convention) identifies the element's column.
Tables or arrays that require two indexes to identify a particular element
are called two dimensional arrays. Note that multidimensional arrays can
have more than two dimensions. Visual Basic supports at least 60 array
dimensions, but most people will need to use more than two or three
dimensional-arrays.
The following statement declares a two-dimensional array 50 by 50 array
within a procedure.
Dim AvgMarks (50, 50)
It is also possible to define the lower limits for one or both the dimensions
as for fixed size arrays. An example for this is given here.
Dim Marks (101 To 200, 1 To 100)
An example for three dimensional-array with defined lower limits is given
below.
Dim Details(101 To 200, 1 To 100, 1 To 100)
Static and dynamic arrays
Basically, you can create either static or dynamic arrays. Static arrays must
include a fixed number of items, and this number must be known at
compile time so that the compiler can set aside the necessary amount of
memory. You create a static array using a Dim statement with a constant
argument:
This is a static array.
Dim Names(100) As String
Visual Basic starts indexing the array with 0. Therefore, the preceding
array actually holds 101 items.

81

ARRAYS IN
VISUAL BASIC

NOTES

Most programs don't use static arrays because programmers rarely know at
compile time how many items you need and also because static arrays can't
be resized during execution. Both these issues are solved by dynamic
arrays. You declare and create dynamic arrays in two distinct steps. In
general, you declare the array to account for its visibility (for example, at
the beginning of a module if you want to make it visible by all the
procedures of the module) using a Dim command with an empty pair of
brackets. Then you create the array when you actually need it, using a
ReDim statement:
An array defined in a BAS module (with Private scope)
Dim Customers() As String
...
Sub Main()
ere you create the array.
ReDim Customer(1000) As String
End Sub
If you're creating an array that's local to a procedure, you can do
everything with a single ReDim statement:
Sub PrintReport()
 This array is visible only to the procedure.
ReDim Customers(1000) As String
...
End Sub
If you don't specify the lower index of an array, Visual Basic assumes it to
be 0, unless an Option Base 1 statement is placed at the beginning of the
module. My suggestion is this: Never use an Option Base statement
because it makes code reuse more difficult. (You can't cut and paste
routines without worrying about the current Option Base.) If you want to
explicitly use a lower index different from 0, use this syntax instead:
ReDim Customers(1 To 1000) As String
Dynamic Array
Dynamic arrays can be re-created at will, each time with a different
number of items. When you re-create a dynamic array, its contents are
reset to 0 (or to an empty string) and you lose the data it contains. If you
want to resize an array without losing its contents, use the ReDim Preserve
command:

ReDim Preserve Customers(2000) As String
When you're resizing an array, you can't change the number of its
dimensions nor the type of the values it contains. Moreover, when you're
using ReDim Preserve on a multidimensional array, you can resize only its
last dimension:
ReDim Cells(1 To 100, 10) As Integer
...
ReDim Preserve Cells(1 To 100, 20) As Integer ' This works.
ReDim Preserve Cells(1 To 200, 20) As Integer ' This doesn't.

82

VISUAL BASIC
PROGRAMMING

NOTES

Finally, you can destroy an array using the Erase statement. If the array is
dynamic, Visual Basic releases the memory allocated for its elements (and
you can't read or write them any longer); if the array is static, its elements
are set to 0 or to empty strings.
You can use the LBound and UBound functions to retrieve the lower and
upper indices. If the array has two or more dimensions, you need to pass a
second argument to these functions to specify the dimension you need:
Print LBound(Cells, 1) ' Displays 1, lower index of 1st dimension
Print LBound(Cells) ' Same as above
Print UBound(Cells, 2) ' Displays 20, upper index of 2nd dimension
Evaluate total number of elements.
NumEls = (UBound(Cells) _ LBound(Cells) + 1) * _
(UBound(Cells, 2) _ LBound(Cells, 2) + 1)
Arrays within UDTs
UDT structures can include both static and dynamic arrays. Here's a
sample structure that contains both types:
Type MyUDT
StaticArr(100) As Long
DynamicArr() As Long
End Type
...
Dim udt As MyUDT
' You must DIMension the dynamic array before using it.
ReDim udt.DynamicArr(100) As Long
' You don't have to do that with static arrays.
udt.StaticArr(1) = 1234
The memory needed by a static array is allocated within the UDT
structure; for example, the StaticArr array in the preceding code snippet
takes exactly 400 bytes. Conversely, a dynamic array in a UDT takes only
4 bytes, which form a pointer to the memory area where the actual data is
stored. Dynamic arrays are advantageous when each individual UDT
variable might host a different number of array items. As with all dynamic
arrays, if you don't dimension a dynamic array within a UDT before
accessing its items, you get an error 9—"Subscript out of range."
Variables of different data types when combined as a single variable to
hold several related information’s is called a User-Defined data type.
A Type statement is used to define a user-defined type in the General
declaration section of a form or module. User-defined data types can only
be private in form while in standard modules can be public or private. An
example for a user defined data type to hold the product details is as given
below.
Private Type ProductDetails
ProdID as String
ProdName as String
Price as Currency
End Type

83

ARRAYS IN
VISUAL BASIC

NOTES

CONTROL ARRAYS
We have seen many examples of the usefulness of subscripted variables.
They are essential for writing concise solutions to many programming
problems. Because of the great utility that subscripts provide, Visual Basic
also provides a means of constructing arrays of text boxes, labels,
command buttons, and so on. Because text boxes, labels, and command
buttons are referred to generically in Visual Basic as controls, arrays of
these objects are called control arrays.
 Unlike variable arrays, which can only be created by Dim and
ReDim statements once a program is running, at least one element of a
control array must be created when the form is designed. The remaining
elements can be created either during form design, or, perhaps more
typically, with the Load statement when the program is run.
To create the first element of an array of text boxes, create an ordinary text
box, then access the Properties window, and select the property called
Index. By default this property is blank. Change the Index property to 0
(zero). Your text box is now the first element in a subscripted control
array. If the name of a text box is txtBox and its Index property is 0, then
assigning a value to the text box during run time requires a statement of
the form

txtBox(0).Text = value
Arrays are not of much use if they contain only a single element.

To create additional elements of the txtBox() control array during form
design, make sure that the element you just created is active by clicking on
it. Next, press Ctrl+C (or open the Edit menu and select Copy). Visual
Basic has now recorded all the properties associated with txtBox(0) and is
ready to reproduce as many copies as you desire. To create a copy, press
Ctrl+V (or open the Edit menu and select Paste). The copy of txtBox(0)
appears in the upper-left corner of the form. The value of the Index
property for this new text box is 1; thus the text box is referred to as
txtBox(1). Move this text box to the desired position. Press Ctrl+V again
and another copy of txtBox(0) appears in the upper left corner of the form.
Its Index property is 2. Move txtBox(2) to an appropriate position.
Continue copying txtBox(0) in this manner until all desired controls have
been created.

It is important to note that all property settings of txtBox(0) are
being passed (as default settings) to the other elements of the txtBox()
control array, with the exception of the Index, Top, and Left settings.
Thus, as a matter of efficiency, before you begin copying txtBox(0), set all
properties that you want carried over to all elements of txtBox(). For
example, if you desire to have the Text property blank for all txtBox()
elements, set the Text property of txtBox(0) to (blank) before starting the
copying process.

The preceding discussion gave a process for creating an array of text
boxes. This same process applies to creating arrays of labels or any other

84

VISUAL BASIC
PROGRAMMING

NOTES

control. In summary, the following steps create an array of controls while
designing a form:
1. Add one instance of the desired control to the form.
2. Set the Index property of this control to 0.
3. Set any other properties of the control that will be common to all
elements of the array.
4. Click on the control and then press Ctrl+C to prepare to make a copy of
the control.
5. Press Ctrl+V to create a copy of the control. Position this control as
desired.
6. Repeat Step 5 until all desired elements of the control array have been
created.
Example:
Private Sub Form_Load()
Dim depNum As Integer
For depNum = 0 To 4
lblDepart(depNum).Caption = “Department” & Str(depNum + 1)
Next depNum
End Sub
Private Sub cmdCompute_Click()
Dim depNum As Integer, sales As Single
sales = 0
For depNum = 0 To 4
sales = sales + Val(txtSales(depNum).Text)
Next depNum
picTotal.Cls
picTotal.Print “Total sales were ”; FormatCurrency(sales)
End Sub
CREATING CONTROL ARRAYS AT RUN TIME
We have discussed the process for creating an entire control array while
designing a form, that is, at design time. However, copying and
positioning control array elements can become tedious if the number of
elements is large. Also, the actual number of elements needed in a control
array may not be known until a response from the user is processed at run
time. In light of these concerns, Visual Basic provides a solution via the
Load statement that only requires us to create the first element of a control
array during design time. The remaining elements are then created as
needed at run time.
Before we discuss creating arrays at run time, we must consider a
preliminary topic—the Left, Top, Width, and Height properties of
controls. These properties specify the location and size of controls.
The standard unit of measurement in Visual Basic is called a twip. There
are about 1440 twips to the inch. At design time, when a control is active
the two panels on the right side of the toolbar give the location and size of
the control, respectively. The figure shows an active text box, named
Text1. The first panel says that the left side of the text box is 960 twips

85

ARRAYS IN
VISUAL BASIC

NOTES

from the left side of the form, and the top of the text box is 720 twips
down from the title bar of the form. In terms of properties, Text1.Left is
960, and Text1.Top is 720. Similarly, the numbers 1935 and 975 in the
second panel give the width and height of the text box in twips. In terms of
properties, Text1.Width is 1935 and Text1.Height is 975. The figure shows
the meanings of these four properties.

The location and size properties of a control can be altered at run time with
statements such as

Text1.Left = 480
which moves the text box to the left or

Text2.Top = Text1.Top + 1.5 * Text1.Height
which places Text2 a comfortable distance below Text1. As a result of the
second statement, the distance between the two text boxes will be half the
height of Text1.

If controlName is the name of a control whose Index property was
assigned a value during form design (thus creating the beginnings of a
control array) and num is a whole number that has not yet been used as an
index for the controlName() array, then the statement
Load controlName(num)
copies all the properties of controlName(0), including the Top and Left
properties, and creates the element controlName(num) of the
controlName() array. The only property of controlName(num) that may
differ from that of controlName(0) is the Visible property. The Load
statement always sets the visible property of the created element to False.
After creating a new element of a control array, you will want to adjust the
Top and Left properties so that the new element has its own unique
location on the form, and then set the visible property of the new element
to True.
SORTING AND SEARCHING
A sort is an algorithm for ordering an array. Of the many different
techniques for sorting an array we discuss two, the bubble sort and the
Shell sort. Both require the interchange of values stored in a pair of
variables. If var1, var2, and temp are all variables of the same data type
(such as all String), then the statements

temp = var1
var1 = var2

var2 = temp
assign var1’s value to var2, and var2’s value to var1.

86

VISUAL BASIC
PROGRAMMING

NOTES

BUBBLE SORT
The bubble sort is an algorithm that compares adjacent items and swaps
those that are out of order. If this process is repeated enough times, the list
will be ordered. Let’s carry out this process on the list Pebbles, Barney,
Wilma, Fred, Dino. The steps for each pass through the list are as follows:
1. Compare the first and second items. If they are out of order, swap them.
2. Compare the second and third items. If they are out of order, swap them.
3. Repeat this pattern for all remaining pairs. The final comparison and
possible swap are between the second-to-last and last elements.
The first time through the list, this process is repeated to the end of the list.
This is called the first pass. After the first pass, the last item (Wilma) will
be in its proper position. Therefore, the second pass does not have to
consider it and so requires one less comparison. At the end of the second
pass, the last two items will be in their proper position. (The items that
must have reached their proper position have been underlined.) Each
successive pass requires one less comparison. After four passes, the last
four items will be in their proper positions, and hence, the first will be
also.

SEARCHING
Suppose we had an array of 1000 names in alphabetical order and wanted
to locate a specific person in the list. One approach would be to start with
the first name and consider each name until a match was found. This
process is called a sequential search. We would find a person whose
name begins with “A” rather quickly, but 1000 comparisons might be
necessary to find a person whose name begins with “Z.” For much longer
lists, searching could be a time-consuming matter. However, when the list
has already been sorted into either ascending or descending order, there is
a method, called a binary search, which shortens the task considerably.

87

ARRAYS IN
VISUAL BASIC

NOTES

Let us refer to the sought item as quarry. The binary search looks
for quarry by determining in which half of the list it lies. The other half is
then discarded, and the retained half is temporarily regarded as the entire
list. The process is repeated until the item is found. A flag can indicate if
quarry has been found.
The algorithm for a binary search of an ascending list is as follows (Figure
6-8 shows the flowchart for a binary search):
1. At each stage, denote the subscript of the first item in the retained list by
first and the subscript of the last item by last. Initially, the value of first is
1, the value of last is the number of items in the list, and the value of flag
is False.
2. Look at the middle item of the current list, the item having the subscript
middle = Int((first + last) / 2).
3. If the middle item is quarry, then flag is set to True and the search is
over.
4. If the middle item is greater than quarry, then quarry should be in the
first half of the list. So the subscript of quarry must lie between first and
middle [minus] 1. That is, the new value of last is middle – 1.
5. If the middle item is less than quarry, then quarry should be in the
second half of the list of possible items. So the subscript of quarry must lie
between middle + 1 and last. That is, the new value of first is middle + 1.
6. Repeat Steps 2 through 5 until quarry is found or until the halving
process uses up the entire list.In the second case, quarry was not in the
original list.
THE USER INTERFACE
Each cell in the spreadsheet will be an element of a text box control array.
A control array of labels is needed for the numeric labels to the left of each
row and another control array of labels for the alphabetic labels at the top
of each column. Finally, two command buttons are required.

The task of controlling which cells the user can edit will be handled
by a GotFocus event. The task of updating the totals will be handled by a
LostFocus event.figure shows one possible form design with all control
elements loaded. For this application of a spreadsheet, the headings that
have been assigned to cells in rows 1, 2, 6, 8, 14, and 16 are fixed; the user
will not be allowed to edit them. The other entries in column A, the
category names, may be edited by the user, but we have provided the set
from Figure 6-9 as the default.

88

VISUAL BASIC
PROGRAMMING

NOTES

Because processing the totals for the spreadsheet involves adding columns
and rows of cells, coding is simplified by using a control array of text
boxes so that an index in a For...Next loop can step through a set of cells.
A two-dimensional array of text boxes seems natural for the spreadsheet.
Unfortunately, only a single index is available for control arrays in Visual
Basic. However, a single dimensional array of text boxes can be used
without much difficulty if we define a function Indx that connects a pair of
row (1 to 16) and column (1 to 6) values to a unique index (1 to 96) value.
An example of such a rule would be Indx(row,column)=(row–
1)*6+column. Successive values of this function are generated by going
from left to right across row 1, then left to right across row 2, and so on.
A solution to the spreadsheet problem that uses one control array of text
boxes and two control arrays of labels follows. The text box control array
txtCell() provides the 96 text boxes needed for the spreadsheet cells.
Because the proposed Indx function advances by one as we move from left
to right across a row of cells, the cells must be positioned in this order as
they are loaded. The label control array lblRowLab() provides a label for
each of the rows of cells, while label control array lblColLab() provides a
label for each column of cells. The figure shows the layout of the form at
design time.The Height and Width properties given for the text box will
assure enough room on the screen for all 96 cells. These dimensions can be
obtained by creating a normal size text box, then reducing its width by one
set of grid marks and its height by two sets of grid marks.

Review & Self Assessment Question
Q1- What is array?
Q2- What are the differences between fixed size array and Dynamic
Array?
Q3-What is multi Dimensional Array?
Q4-What is dynamic Array?
Q5-What do you mean by control array?
Further Readings
Visual basic by David I Schneider

89

ARRAYS IN
VISUAL BASIC

NOTES

Visual basic by Steven Holzner
Visual basic by Bill Sheldon
Visual basic by Billy Holls
Visual basic by Rob Windsor

90

VISUAL BASIC
PROGRAMMING

NOTES

UNIT-9 USER DEFINED DATA
TYPE

Contents
 Introduction
 User Defined data Type
 Data Type Conversion
 Review & Self Assessment Question
 Further Readings

The user defined data type can be declared with a variable using the Dim
statement as in any other variable declaration statement. An array of these
user-defined data types can also be declared. An example to consolidate
these two features is given below.
Dim ElectronicGoods as ProductDetails ' One Record
Dim ElectronicGoods(10) as ProductDetails ' An array of 11 records
User Define Data Type
A User-Defined data type can be referenced in an application by using the
variable name in the procedure along with the item name in the Type
block. Say, for example if the text property of a TextBox namely text1 is
to be assigned the name of the electronic good, the statement can be
written as given below.
Text1.Text = ElectronicGoods.ProdName
If the same is implemented as an array, then the statement becomes
Text1.Text = ElectronicGoods(i).ProdName
User-defined data types can also be passed to procedures to allow many
related items as one argument.
Sub ProdData(ElectronicGoods as ProductDetails)
Text1.Text = ElectronicGoods.ProdName
Text1.Text = ElectronicGoods.Price
End Sub
Data Type Conversion
Visual Basic functions either to convert a string into an integer or vice
versa and many more conversion functions. A complete listing of all the
conversion functions offered by Visual Basic is elucidated below.

Conversion To Function
Boolean Cbool

Byte Cbyte

Currency Ccur

Date Cdate

Decimals Cdec

Double CDbl

91

USER DEFINED
DATA TYPE

NOTES

Integer Cint

Long CLng

Single CSng

String CStr

Variant Cvar

Error CVErr

A conversion function should always be placed at the right hand side of
the calculation statement.
Review & Self Assessment Question
Q1- What do you mean by user defined data type?
Q2- Explain data type conversion?
Further Readings
Visual basic by David I Schneider
Visual basic by Steven Holzner
Visual basic by Bill Sheldon
Visual basic by Billy Holls
Visual basic by Rob Windsor

92

VISUAL BASIC
PROGRAMMING

NOTES

UNIT: 10 - VISUAL BASIC
BUILT-IN FUNCTIONS

Contents
 Introduction
 Date and Time Function
 Format String
 String Function
 Review & self Assessment Question
 Further Readings

Introduction
A function is similar to a procedure but the main purpose of the function is to
accept a certain input from the user and return a value which is passed on to
the main program to finish the execution.
There are two types of functions, the built-in functions (or internal functions)
and the functions created by the programmers.
The syntax of a function is

FunctionName (arguments)
The arguments are values that are passed on to the function.
Many built-in functions are offered by Visual Basic fall under various
categories. These functions are procedures that return a value. The
functions fall into the following basic categories that will be discussed in
the following sections at length.
 Date and Time Functions
 Format Function
 String Functions

 Not only information in the specific Date data type, it also provides
a lot of date- and time-related functions. These functions are very
important in all business applications and deserve an in-depth look.
Date and Time are internally stored as numbers in does Visual
Basic let you store date and time Visual Basic. The decimal points
represents the time between 0:00:00 and 23:59:59 hours inclusive.

 The system's current date and time can be retrieved using the Now,
Date and Time functions in Visual Basic. The Now function
retrieves the date and time, while Date function retrieves only date
and Time function retrieves only the time.

 To display both the date and time together a message box is
displayed use the statement given below.

 MsgBox "The current date and time of the system is" & Now
 Here & is used as a concatenation operator to concentrate the string

and the Now function. Selective portions of the date and time value
can be extracted using the below listed functions.

Function Extracted Portion

93

VISUAL BASIC
BUILT IN FUNCTION

NOTES

Year () Year (Now)

Month () Month (Now)

Day () Day (Now)

WeekDay () WeekDay (Now)

Hour () Hour (Now)

Minute () Minute (Now)

Second () Second (Now)

 The calculation and conversion functions related to date and time
functions are listed below.

Function Description

DateAdd () Returns a date to which a specific interval has been
added

DateDiff () Returns a Long data type value specifying the
interval between the two values

DatePart () Returns an Integer containing the specified part of
a given date

DateValue () Converts a string to a Date

TimeValue () Converts a string to a time

DateSerial () Returns a date for specified year, month and day

 DateDiff Function
 The DateDiff function returns the intervals between two dates in

terms of years, months or days. The syntax for this is given below.
 DateDiff (interval, date1, date2[, firstdayofweek[,

firstweekofyear]])
 Format Function
 The format function accepts a numeric value and converts it to a

string in the format specified by the format argument. The syntax
for this is given below.

 Format (expression[, format[,firstdayofweek[,firstweekofyear]]])
 The Format function syntax has these parts:

Part Description

94

VISUAL BASIC
PROGRAMMING

NOTES

Expression Required any valid expression

Format Optional. A valid named or user-defined format
expression.

Firstdayofweek Optional. A contant that specifies the first day of
the week.

Firstweekofyear Optional. A contant that specifies the first week of
the year

Review & Self Assessment Question
Q1- What are the differences between Built in Function and Function
created by Programmer?
Q2-Explain Date and Time function with example?
Q3-What is String Function?
Further Readings
Visual basic by David I Schneider
Visual basic by Steven Holzner
Visual basic by Bill Sheldon
Visual basic by Billy Holls
Visual basic by Rob Windsor

95

ERROR HANDLING

NOTES
UNIT: 11-ERROR HANDLING

Contents
 Error Handling
 Syntax Error
 Logical Error
 Runtime Error
 On Error GoTo errlabel
 On Error GoTo
 Break Point
 Review & Self Assessment Question
 Further Readings

Error Handling
Error Handling enables programmers to write clearer, more robust,

more fault-tolerant programs. Error handling enables the programmer to
attempt to recover (i.e., continue executing) from infrequent fatal errors
rather than letting them occur and suffering the consequences (such as loss
of application data). If an error is severe and recovery is not possible, the
program can be exited "gracefully"-all files can be closed and notification
can be given that the program is terminating. The recovery code is called
an error handler.

Error handling is designed for dealing with synchronous errors
such as an attempt to divide by 0 (that occurs as the program executes the
divide instruction). Other common examples of synchronous errors are
memory exhaustion, an out-of-bound array index, and arithmetic overflow.
Error handling provides the programmer with a disciplined set of
capabilities for dealing with these types of errors.

Error-handling code varies in nature and amount among software
systems depending on the application and whether or not the software is a
product for release. Products tend to contain much more error-handling
code than is contained in "casual" software.

Usually, error-handling code is interspersed throughout a program's
code. Errors are dealt with the places in the code where errors are likely to
occur. The advantage of this approach is that a programmer reading the
code can see the error handling in the immediate vicinity of the code and
determine if the proper error handling has been implemented.
The problem with the scheme is that code in a sense becomes "polluted"
with error handling. It becomes difficult for a programmer concerned with
the application itself to read the code and determine if the code is working
is correctly. Error handling often makes the code more difficult to
understand and maintain.
When Error Handling should be used Error handling should be used to
process only exceptional situations, despite the fact that there is nothing to
prevent that programmer from using errors as an alternate form of program
control.

96

VISUAL BASIC
PROGRAMMING

NOTES

• No matter how hard we try, errors do creep into our programs. These
errors can be grouped into three categories:

1. Syntax errors
2. Run-time errors
3. Logic errors

• Syntax errors occur when you mistype a command or leave out an
expected phrase or argument. Visual Basic detects these errors as they
occur and even provides help in correcting them. You cannot run a Visual
Basic program until all syntax errors have been corrected.
• Run-time errors are usually beyond your program's control. Examples
include: when a variable takes on an unexpected value (divide by zero),
when a drive door is left open, or when a file is not found. Visual Basic
allows you to trap such errors and make attempts to correct them.
• Logic errors are the most difficult to find. With logic errors, the program
will usually run, but will produce incorrect or unexpected results. The
Visual Basic debugger is an aid in detecting logic errors.
 Some ways to minimize errors:

 Design your application carefully. More design time means less
debugging time.

 Use comments where applicable to help you remember what you
were trying to do.

 Use consistent and meaningful naming conventions for your
variables, objects, and procedures.

• Run-time errors are trappable. That is, Visual Basic recognizes an error
has occurred and enables you to trap it and take corrective action. If an
error occurs and is not trapped, your program will usually end in a rather
unceremonious manner.
• Error trapping is enabled with the On Error statement:
On Error GoTo errlabel
Yes, this uses the dreaded GoTo statement! Any time a run-time error
occurs following this line, program control is transferred to the line labeled
errlabel. Recall a labeled line is simply a line with the label followed by a
colon (:).
• The best way to explain how to use error trapping is to look at an outline
of an example procedure with error trapping.
Sub SubExample ()
[Declare variables, ...]
On Error GoTo HandleErrors
[Procedure code]
Exit Sub
HandleErrors:
Error handling code]
End Sub
Once you have set up the variable declarations, constant definitions, and
any other procedure preliminaries, the On Error statement is executed to
enable error trapping. Your normal procedure code follows this statement.

97

ERROR HANDLING

NOTES

The error handling code goes at the end of the procedure, following the
HandleErrors statement label. This is the code that is executed if an error is
encountered anywhere in the Sub procedure. Note you must exit (with Exit
Sub) from the code before reaching the HandleErrors line to avoid
inadvertent execution of the error handling code.
• Since the error handling code is in the same procedure where an error
occurs, all variables in that procedure are available for possible corrective
action. If at some time in your procedure, you want to turn off error
trapping, that is done with the following statement:
On Error GoTo
• Once a run-time error occurs, we would like to know what the error is
and attempt to fix it. This is done in the error handling code.
• Visual Basic offers help in identifying run-time errors. The Err object
returns, in its Number property (Err.Number), the number associated with
the current error condition. (The Err function has other useful properties
that we won’t cover here - consult on-line help for further information.)
The Error() function takes this error number as its argument and returns a
string description of the error. Consult on-line help for Visual Basic run-
time error numbers and their descriptions.
• Once an error has been trapped and some action taken, control must be
returned to your application. That control is returned via the Resume
statement. There are three options:
Resume Lets you retry the operation that caused the error. That is, control
is returned to the line where the error occurred. This could be dangerous in
that, if the error has not been corrected (via code or by the user), an infinite
loop between the error handler and the procedure code may result.
Resume Next Program control is returned to the line immediately
following the line where the error occurred.
Resume label Program control is returned to the line labeled label.
• Be careful with the Resume statement. When executing the error
handling portion of the code and the end of the procedure is encountered
before a Resume, an error occurs. Likewise, if a Resume is encountered
outside of the error handling portion of the code, an error occurs.
• Development of an adequate error handling procedure is application
dependent. You need to know what type of errors you are looking for and
what corrective actions must be taken if these errors are encountered. For
example, if a 'divide by zero' is found, you need to decide whether to skip
the operation or do something to reset the offending denominator.
• What we develop here is a generic framework for an error handling
procedure. It simply informs the user that an error has occurred, provides a
description of the error, and allows the user to Abort, Retry, or Ignore.
This framework is a good starting point for designing custom error
handling for your applications.
• The generic code (begins with label HandleErrors) is:
HandleErrors:
Select Case MsgBox(Error(Err.Number), vbCritical +

98

VISUAL BASIC
PROGRAMMING

NOTES

vbAbortRetryIgnore, "Error Number" + Str(Err.Number))
Case vbAbort
 Resume ExitLine
Case vbRetry
 Resume
Case vbIgnore
 Resume Next
End Select
ExitLine:
Exit Sub
Let’s look at what goes on here. First, this routine is only executed when
an error occurs. A message box is displayed, using the Visual Basic
provided error description [Error(Err.Number)] as the message, uses a
critical icon along with the Abort, Retry, and Ignore buttons, and uses the
error number [Err.Number] as the title. This message box returns a
response indicating which button was selected by the user.
If Abort is selected, we simply exit the procedure. (This is done using a
Resume to the line labeled ExitLine. Recall all error trapping must be
terminated with a Resume statement of some kind.)
If Retry is selected, the offending program line is retried (in a real
application, you or the user would have to change something here to
correct the condition causing the error).
If Ignore is selected, program operation continues with the line following
the error causing line.
• To use this generic code in an existing procedure, you need to do three
things:
1. Copy and paste the error handling code into the end of your procedure.
2. Place an Exit Sub line immediately preceding the HandleErrors labeled
line.
3. Place the line, On Error GoTo HandleErrors, at the beginning of your
procedure.
For example, if your procedure is the SubExample seen earlier, the
modified code will look like this:
Sub SubExample()
 .
 . [Declare variables, ...]
 .
On Error GoTo HandleErrors
 .
 . [Procedure code]
 .
Exit Sub
HandleErrors:
Select Case MsgBox(Error(Err.Number), vbCritical +
vbAbortRetryIgnore, "Error Number" + Str(Err.Number))
Case vbAbort

99

ERROR HANDLING

NOTES

 Resume ExitLine
Case vbRetry
 Resume
Case vbIgnore
 Resume Next
End Select
ExitLine:
Exit Sub
End Sub
Again, this is a very basic error-handling routine. You must determine its
utility in your applications and make any modifications necessary.
Specifically, you need code to clear error conditions before using the Retry
 option.
• One last thing. Once you've written an error handling routine, you need
to test it to make sure it works properly. But, creating run-time errors is
sometimes difficult and perhaps dangerous. Visual Basic comes to the
rescue! The Visual Basic Err object has a method (Raise) associated with it
that simulates the occurrence of a run-time error. To cause an error with
value Number, use: Err.Raise Number
• We can use this function to completely test the operation of any error
handler we write. Don’t forget to remove the Raise statement once testing
is completed, though! And, to really get fancy, you can also use Raise to
generate your own ‘application-defined’ errors. There are errors specific to
your application that you want to trap.
• To clear an error condition (any error, not just ones generated with the
Raise method), use the method Clear: Err.Clear
1. Start a new project. Add a text box and a command button.
2. Set the properties of the form and each control:
Form1:
BorderStyle - 1-Fixed Single
Caption - Error Generator
Name frmError
Command1:
Caption - Generate Error
Default - True
Name - cmdGenError
Text1:
Name - txtError
Text - [Blank]
The form should look something like this:

100

VISUAL BASIC
PROGRAMMING

NOTES

3. Attach this code to the cmdGenError_Click event.
Private Sub cmdGenError_Click()
On Error GoTo HandleErrors
Err.Raise Val(txtError.Text)
Err.Clear
Exit Sub
HandleErrors:
Select Case MsgBox(Error(Err.Number), vbCritical +
vbAbortRetryIgnore, "Error Number" + Str(Err.Number))
Case vbAbort
 Resume ExitLine
Case vbRetry
 Resume
Case vbIgnore
 Resume Next
End Select
ExitLine:
Exit Sub
End Sub
In this code, we simply generate an error using the number input in the text
box. The generic error handler then displays a message box which you can
respond to in one of three ways.
4. Save your application. Try it out using some of these typical error
numbers (or use numbers found with on-line help). Notice how program
control changes depending on which button is clicked.
Error Number Error Description
6 Overflow
9 Subscript out of range
11 Division by zero
13 Type mismatch
16 Expression too complex
20 Resume without error
52 Bad file name or number
53 File not found
55 File already open
61 Disk full
70 Permission denied
92 For loop not initialized
• We now consider the search for, and elimination of, logic errors. These
are errors that don’t prevent an application from running, but cause
incorrect or unexpected results. Visual Basic provides an excellent set of
debugging tools to aid in this search.
• Debugging a code is an art, not a science. There are no prescribed
processes that you can follow to eliminate all logic errors in your program.
The usual approach is to eliminate them as they are discovered.

101

ERROR HANDLING

NOTES

• What we’ll do here is present the debugging tools available in the Visual
Basic environment (several of which appear as buttons on the toolbar) and
describe their use with an example. You, as the program designer, should
select the debugging approach and tools you feel most comfortable with.
• The interface between your application and the debugging tools is via
three different debug windows: the Immediate Window, the Locals
Window, and the Watch Window. These windows can be accessed from
the View menu (the Immediate Window can be accessed by pressing
Ctrl+G). Or, they can be selected from the Debug Toolbar (accessed using
the Toolbars option under the View menu):

•

• All debugging using the debug windows is done when your application is
in break mode. You can enter break mode by setting breakpoints, pressing
Ctrl+Break, or the program will go into break mode if it encounters an
untrapped error or a Stop statement.
• Once in break mode, the debug windows and other tools can be used to:

1. Determine values of variables
2. Set breakpoints
3. Set watch variables and expressions
4. Manually control the application
5. Determine which procedures have been called
6. Change the values of variables and properties

Example - Debugging
1. Unlike other examples, we’ll do this one as a group. It will be used to
demonstrate use of the debugging tools.
2. The example simply has a form with a single command button. The
button is used to execute some code. We won’t be real careful about
proper naming conventions and such in this example.

3. The code attached to this button’s Click event is a simple loop that
evaluates a function at several values.
Private Sub Command1_Click()
Dim X As Integer, Y As Integer
X = 0
Do
Y = Fcn(X)
X = X + 1

102

VISUAL BASIC
PROGRAMMING

NOTES

Loop While X <= 20
End Sub
This code begins with an X value of 0 and computes the Y value using the
general integer function Fcn. It then increments X by 1 and repeats the
Loop. It continues looping While X is less than or equal to 20. The
function Fcn is computed using:
Function Fcn(X As Integer) As Integer
Fcn = CInt(0.1 * X ^ 2)
End Function
Admittedly, this code doesn’t do much, especially without any output, but
it makes a good example for looking at debugger use. Set up the
application and get ready to try debugging.
• There are several debugging tools available for use in Visual Basic.
Access to these tools is provided with both menu options and buttons on
the Debug toolbar. These tools include breakpoints,watchpoints,calls,step
• The simplest tool is the use of direct prints to the immediate window.
• Printing to the Immediate Window:

You can print directly to the immediate window while an application is
running. Sometimes, this is all the debugging you may need. A few
carefully placed print statements can sometimes clear up all logic errors,
especially in small applications.
To print to the immediate window, use the Print method:
Debug.Print [List of variables separated by commas or semi-colons]
• Debug.Print Example:

1. Place the following statement in the Command1_Click procedure
after the line calling the general procedure Fcn:
Debug.Print X; Y
and run the application.

2. Examine the immediate window. Note how, at each iteration of the
loop, the program prints the value of X and Y. You could use this
information to make sure X is incrementing correctly and that Y
values look acceptable.

3. Remove the Debug.Print statement.
• Breakpoints:

In the above examples, the program ran to completion before we could
look at the debug window. In many applications, we want to stop the
application while it is running, examine variables and then continue
running. This can be done with breakpoints.
Break Point
A breakpoint is a line in the code where you want to stop (temporarily) the
execution of the program, that is force the program into break mode. To
set a breakpoint, put the cursor in the line of code you want to break on.

103

ERROR HANDLING

NOTES

Then, press <F9> or click the Breakpoint button on the toolbar or select
Toggle Breakpoint from the Debug menu. The line will be highlighted.
When you run your program, Visual Basic will stop when it reaches lines
with breakpoints and allow you to use the immediate window to check
variables and expressions. To continue program operation after a
breakpoint, press <F5>, click the Run button on the toolbar, or choose
Start from the Run menu.
You can also change variable values using the immediate window. Simply
type a valid Basic expression. This can sometimes be dangerous, though,
as it may change program operation completely.
• Breakpoint Example:
1. Set a breakpoint on the X = X + 1 line in the sample program. Run the
program.
2. When the program stops, display the immediate window and type the
following line:
Print X;Y
3. The values of these two variables will appear in the debug window. You
can use a question mark (?) as shorthand for the command Print, if you’d
like. Restart the application. Print the new variable values.
Try other breakpoints if you have time. Once done, all breakpoints can be
cleared by Ctrl+Shift+<F9> or by choosing Clear All Breakpoints from the
Debug menu. Individual breakpoints can be toggled using <F9> or the
Breakpoint button on the toolbar.
• Viewing Variables in the Locals Window:

The locals window shows the value of any variables within the scope of
the current procedure. As execution switches from procedure to procedure,
the contents of this window changes to reflect only the variables applicable
to the current procedure. Repeat the above example and notice the values
of X and Y also appear in the locals window.
• Watch Expressions:

The Add Watch option on the Debug menu allows you to establish watch
expressions for your application. Watch expressions can be variable values
or logical expressions you want to view or test. Values of watch
expressions are displayed in the watch window.
In break mode, you can use the Quick Watch button on the toolbar to add
watch expressions you need. Simply put the cursor on the variable or
expression you want to add to the watch list and click the Quick Watch
button.
Watch expressions can be edited using the Edit Watch option on the
Debug menu.
• Watch Expression Example:
1. Set a breakpoint at the X = X + 1 line in the example.

104

VISUAL BASIC
PROGRAMMING

NOTES

2. Set a watch expression for the variable X. Run the application. Notice X
appears in the watch window. Every time you re-start the application, the
value of X changes.
3. At some point in the debug procedure, add a quick watch on Y. Notice it
is now in the watch window.
4. Clear the breakpoint. Add a watch on the expression: X = Y. Set Watch
Type to ‘Break When Value Is True.’ Run the application. Notice it goes
into break mode and displays the watch window whenever X = Y. Delete
this last watch expression.
• Call Stack:

Selecting the Call Stack button from the toolbar (or pressing Ctrl+L or
selecting Call Stack from the View menu) will display all active
procedures, that is those that have not been exited.
Call Stack helps you unravel situations with nested procedure calls to give
you some idea of where you are in the application.
• Call Stack Example:

1. Set a breakpoint on the Fcn = Cint() line in the general function
procedure. Run the application. It will break at this line.

2. Press the Call Stack button. It will indicate you are currently in the
Fcn procedure which was called from the Command1_Click
procedure. Clear the breakpoint.

• Single Stepping (Step Into):

While at a breakpoint, you may execute your program one line at a time by
pressing <F8>, choosing the Step Into option in the Debug menu, or by
clicking the Step Into button on the toolbar.
This process is single stepping. It allows you to watch how variables
change (in the locals window) or how your form changes, one step at a
time.
You may step through several lines at a time by using Run To Cursor
option. With this option, click on a line below your current point of
execution. Then press Ctrl+<F8> (or choose Run To Cursor in the Debug
menu). the program will run through every line up to the cursor location,
then stop.
• Step Into Example:

1. Set a breakpoint on the Do line in the example. Run the
application.

2. When the program breaks, use the Step Into button to single step
through the program.

3. At some point, put the cursor on the Loop While line. Try the Run
To Cursor option (press Ctrl+<F8>).

•Procedure Stepping (Step Over):

105

ERROR HANDLING

NOTES

While single stepping your program, if you come to a procedure call you
know functions properly, you can perform procedure stepping. This simply
executes the entire procedure at once, rather than one step at a time.
To move through a procedure in this manner, press Shift+<F8>, choose
Step Over from the Debug menu, or press the Step Over button on the
toolbar.
• Step over Example:

1. Run the previous example. Single step through it a couple of times.
2. One time through, when you are at the line calling the Fcn

function, press the Step Over button. Notice how the program did
not single step through the function as it did previously.

• Function Exit (Step Out):
While stepping through your program, if you wish to complete the
execution of a function you are in, without stepping through it line-by-line,
choose the Step Out option. The function will be completed and you will
be returned to the procedure accessing that function.
To perform this step out, press Ctrl+Shift+<F8>, choose Step Out from the
Debug menu, or press the Step Out button on the toolbar. Try this on the
previous example.
• We’ve looked at each debugging tool briefly. Be aware this is a cursory
introduction. Use the on-line help to delve into the details of each tool
described. Only through lots of use and practice can you become a
proficient debugger. There are some guidelines to doing a good job,
though.
• My first suggestion is: keep it simple. Many times, you only have one or
two bad lines of code. And you, knowing your code best, can usually
quickly narrow down the areas with bad lines. Don’t set up some elaborate
debugging procedure if you haven’t tried a simple approach to find your
error(s) first. Many times, just a few intelligently-placed Debug.Print
statements or a few examinations of the immediate and locals windows
can solve your problem.
• A tried and true approach to debugging can be called Divide and
Conquer. If you’re not sure where your error is, guess somewhere in the
middle of your application code. Set a breakpoint there. If the error hasn’t
shown up by then, you know it’s in the second half of your code. If it has
shown up, it’s in the first half. Repeat this division process until you’ve
narrowed your search.
• And, of course, the best debugging strategy is to be careful when you
first design and write your application to minimize searching for errors
later.
Review & Self Assessment Question
Q1-Describe Error Handling?
Q2-What do you mean by logical error?
Q3-What are the differences between Syntax error and Runtime Error?
Q4-What is Break point? Explain it.
Further Readings

106

VISUAL BASIC
PROGRAMMING

NOTES

Visual basic by David I Schneider
Visual basic by Steven Holzner
Visual basic by Bill Sheldon
Visual basic by Billy Holls
Visual basic by Rob Windsor

107

CLASS & OBJECT

NOTES
UNIT: 12- CLASS & OBJECT

Contents
 The Basic Concepts
 Main Benefits of OOP’s
 Encapsulation
 Inheritance
 Polymorphism
 Auto-instancing object variables
 Review & Self Assessment Question
 Further Readings

Is Visual Basic a real object-oriented programming (OOP) language? Is it
just an object-based language? Or is it somewhere between these two
extremes?
For what it’s worth, my position on the question is a compromise: Visual
Basic definitively is not a true OOP language and it won’t be one until it
possesses some essential OOP features, such as inheritance. But this deficit
shouldn’t excuse you’re not learning in depth what classes and objects
have to offer developers.
Class modules can immensely improve your productivity, help you solve
many common and intricate programming problems, and even permit you
to perform tasks that would be extremely difficult, if not impossible,
otherwise.

 Even if Visual Basic isn’t a full-fledged object-oriented
programming language, you can still use its classes to better
organize your code into truly reusable modules and design your
applications entirely using concepts derived from the Object-
Oriented Design discipline. In this sense, the inclusion of a tool
such as Visual Modeler in the Enterprise Edition is a clear sign of
Microsoft’s will to pursue this goal.

 Most important, objects are the base on which almost every feature
of Visual Basic is implemented. For example, without objects you
can’t do serious database programming, you can’t deliver Internet
applications, and you can’t write components for COM, DCOM, or
MTS. In short, you can do little or nothing without a firm grasp on
what objects are and how you can take advantage of them.

 If you’re absolutely new to object-oriented programming, this
could be the most difficult chapter of the entire book for you to
grasp. To understand how objects can help you write better
programs in less time, you must be ready for a conceptual leap, not
unlike the leap that many programmers had to take when switching
from pure procedural MS-DOS languages such as QuickBasic to
newer and more sophisticated event-driven programming
environments such as Visual Basic. But once you grasp the basic
concepts of OOP, you’ll probably agree that objects are the most

108

VISUAL BASIC
PROGRAMMING

NOTES

exciting thing to happen to Visual Basic since its first version.
When you dive into object-oriented programming, you’ll soon find
yourself devising new, concise, and elegant solutions to old
problems, often in less time and with less code. But I don’t want to
sound intimidating. As a Visual Basic programmer, you’ve already
learned to master many advanced programming techniques
concerned with, for example, events, database programming, and
user interface issues. OOP isn’t more difficult, it’s merely different.
And it’s certainly a lot of fun.

 If you’ve ever read books or articles about OOP, you surely found
dozens of different definitions for the term object. Most of the
definitions are correct and confusing at the same time. The
definition I like most is this one:

 An object is an entity that embeds both data and the code that deals
with it.

 Let’s see what this means in practice.
The Basic Concepts
I have noticed that many programmers exposed for the first time to OOP
tend to confuse classes and objects, so a very short explanation is in order.
A class is a portion of the program (a source code file, in Visual Basic)
that defines the properties, methods, and events—in a word, behavior—of
one or more objects that will be created during execution. An object is an
entity created at run time, which requires memory and possibly other
system resources, and is then destroyed when it’s no longer needed or
when the application ends. In a sense, classes are design time–only
entities, while objects are run time–only entities.
Your users will never see a class; rather, they’ll probably see and interact
with objects created from your classes, such as invoices, customer data, or
circles on the screen. As a programmer, your point of view is reversed
because the most concrete thing you’ll have in front of you while you’re
writing the application is the class, in the form of a class module in the
Visual Basic environment. Until you run the application, an object isn’t
more real than a variable declared with a Dim statement in a code listing.
In my opinion, this dichotomy has prevented many Visual Basic
programmers from embracing the OOP paradigm. We have been spoiled
by the RAD (Rapid Application Development) orientation of our favorite
tool and often think of objects as visible objects, such as forms, controls,
and so on. While Visual Basic can also create such visible objects—
including Microsoft ActiveX controls—you won’t grasp the real power of
object orientation until you realize that almost everything in your program
can be an object, from concrete and visible entities such as invoices,
products, customers, employees, and so on to more abstract ones such as
the validation process or the relationship between two tables.
The Main Benefits of OOP
Before getting practical, I’d like to hint at what object-oriented
programming has to offer you. I’ll do that by listing the key features of

109

CLASS & OBJECT

NOTES

OOPLs (object-oriented programming languages) and explaining some
concepts.
Encapsulation
Encapsulation is probably the feature that programmers appreciate most in
object-oriented programming. In a nutshell, an object is the sole owner of
its own data. All data is stored inside a memory area that can’t be directly
accessed by another portion of the application, and all assignment and
retrieval operations are performed through methods and properties
provided by the object itself. This simple concept has at least two far-
reaching consequences:

 You can check all the values assigned to object properties before
they’re actually stored in memory and immediately reject all
invalid ones.

 You’re free to change the internal implementation of the data
stored in an object without changing the way the rest of the
program interacts with the object. This means that you can later
modify and improve the internal workings of a class without
changing a single line of code elsewhere in the application.

 As with most OOP features, it’s your responsibility to ensure that
the class is well encapsulated. The fact that you’re using a class
doesn’t guarantee that the goals of encapsulation are met. In this
and the next chapter, I’ll show you how some simple rules—and
common sense—help you implement robust classes. A robust class
is one that actively protects its internal data from tampering. If an
object derived from a class holds valid data and all the operations
you perform on that object transform the data only into other valid
data (or raise an error if the operation isn’t valid), you can be
absolutely sure that the object will always be in a valid state and
will never propagate a wrong value to the rest of the program. This
is a simple but incredibly powerful concept that lets you
considerably streamline the process of debugging your code.

 The second goal that every programmer should pursue is code
reusability, which you achieve by creating classes that are easily
maintained and reused in other applications. This is a key factor in
reducing the development time and cost. Classes offer much in this
respect, but again they require your cooperation. When you start
writing a new class, you should always ask yourself: Is there any
chance that this class can be useful in other applications? How can
I make this class as independent as possible from the particular
software I’m developing right now? In most cases, this means
adding a few additional properties or additional arguments to
methods, but the effort often pays off nicely. Don’t forget that you
can always resort to default values for properties and optional
arguments for methods, so in most cases these enhancements won’t
really make the code that uses the class more complex than it
actually needs to be.

110

VISUAL BASIC
PROGRAMMING

NOTES

 The concept of self-containment is also strictly related to code
reuse and encapsulation. If you want to create a class module that’s
easily reusable, you absolutely must not allow that class to depend
on any entity outside it, such as a global variable. This would break
encapsulation (because code elsewhere in the application might
change the value of the variable to some invalid data) and above
all, it would prevent you from reusing the class elsewhere without
also copying the global variable (and its parent BAS module). For
the same reason, you should try to make the class independent of
general-purpose routines located in another module. In most cases,
I prefer to duplicate shorter routines in each class module, if this
makes the class easily movable elsewhere.

Polymorphism
 Informally, Polymorphism is the ability of different classes to

expose similar (or identical) interfaces to the outside. The most
evident kind of polymorphism in Visual Basic is forms and
controls. TextBox and PictureBox controls are completely different
objects, but they have some properties and methods in common,
such as Left,BackColor, and Move. This similarity simplifies your
job as a programmer because you don’t have to remember
hundreds of different names and syntax formats. More important, it
lets you manage a group of controls using a single variable (typed
as Control, Variant, or Object) and create generic procedures that
act on all the controls on a form and therefore noticeably reduce the
amount of code you have to write.

Inheritance
 Inheritance is the ability, offered by many OOP languages, to

derive a new class (the derived or inherited class) from another
class (the base class). The derived class automatically inherits the
properties and methods of the base class. For example, you could
define a generic Shape class with properties such
as Color and Position and then use it as a base for more specific
classes (for example, Rectangle, Circle, and so on) that inherit all
those generic properties. You could then add specific members,
such as Width and Height for the Rectangle class andRadius for
the Circle class. It’s interesting to note that, while polymorphism
tends to reduce the amount of code necessary to use the class,
inheritance reduces the code inside the class itself and therefore
simplifies the job of the class creator. Unfortunately, Visual Basic
doesn’t support inheritance, at least not in its more mature form of
implementation inheritance. In the next chapter, I show how you
can simulate inheritance by manually writing code and explain
when and why this can be useful.

Your First Class Module
 Creating a class in Visual Basic is straightforward: just issue an

Add Class Module command from the Project menu. A new code

111

CLASS & OBJECT

NOTES

editor window appears on an empty listing. By default, the first
class module is named Class1, so the very first thing you should do
is change this into a more appropriate name. In this first example, I
show how to encapsulate personal data related to a person, so I’m
naming this first class CPerson.

Note I admit it: I’m not a fanatic about naming conventions. Microsoft
suggests that you use the cls prefix for class module names, but I don’t
comply simply because I feel it makes my code less readable. I often
prefer to use the shorter C prefix for classes (and I for interfaces), and
sometimes I use no prefix at all, especially when objects are grouped in
hierarchies. Of course, this is a matter of personal preference, and I
don’t insist that my system is more rational than any other.
 The first version of our class includes only a few properties. These

properties are exposed as Public members of the class module
itself, as you can see in this code and also in Figure 6-1 on the
following page:

 ‘ In the declaration section of the CPerson class module
Public FirstName As String
Public LastName As String

 This is a very simple class, but it’s a good starting point for
experimenting with some interesting concepts, without being
distracted by details. Once you have created a class module, you
can declare an object variable that refers to an instance of that
class:

 ‘ In a form module
Private Sub cmdCreatePerson_Click()
Dim pers As CPerson ‘ Declare.
Set pers = New CPerson ‘ Create.
pers.FirstName = "John" ‘ Assign properties.
pers.LastName = "Smith"
Print pers.FirstName & " " & pers.LastName ‘Check that it works.
End Sub

 The code’s not very impressive, admittedly. But remember that
here we’re just laying down concepts whose real power will be
apparent only when we apply them to more complex objects in
real-world applications.

Auto-instancing object variables
 Unlike regular variables, which can be used as soon they have been

declared, an object variable must be explicitly assigned an object
reference before you can invoke the object’s properties and
methods. In fact, when an object variable hasn’t been assigned yet,
it contains the special Nothingvalue: In other words, it doesn’t

112

VISUAL BASIC
PROGRAMMING

NOTES

contain any valid reference to an actual object. To see what this
means, just try out this code:
Dim pers As CPerson ‘ Declare the variable,
‘ Set pers = New CPerson ‘ but comment out the creation step.
Print pers.FirstName ‘ This raises an error 91 – "Object variable
‘ or With block variable not set"

 In most cases, this behavior is desirable because it doesn’t make
much sense to print a property of an object that doesn’t exist. A
way to avoid the error is to test the current contents of an object
variable using the Is Nothing test:
‘ Use the variable only if it contains a valid object reference
If Not (pers Is Nothing) Then Print pers.FirstName

In other cases, however, you just want to create an object, any object, and
then assign its properties. In these circumstances, you might find it useful
to declare an auto-instancing object variable using the As Newclause:

Dim pers As New CPerson ‘ Auto-instancing variable
When at run time Visual Basic encounters a reference to an auto-
instancing variable, it first determines whether it’s pointing to an existing
object and creates a brand new instance of the class if necessary. Auto-
instancing variables have virtues and liabilities, plus a few quirks you
should be aware of:

 Auto-instancing variables obviously reduce the amount of code you
need to write to be up and running with your classes. For this
reason, they’re often valuable during the prototyping phase.

 Auto-instancing variables can’t be tested against the Nothing value.
In fact, as soon as you use one in the Is Nothing test, Visual Basic
relentlessly creates a new instance and the test always returns
False. In some cases, this could be the decisive factor in whether to
stay clear of auto-instancing variables.

 Auto-instancing variables tend to eliminate errors, but sometimes
this is precisely what you don’t need. In fact, during the
development phase you want to see errors because they’re the
symptoms of other serious flaws in the code logic. Auto-instancing
variables make the debugging step a little more obscure because
you can never be sure when and why an object was created. This is
probably the most persuasive reason not to use auto-instancing
variables.

 You can’t declare an auto-instancing variable of a generic type,
such as Object, Form, or MDI Form because Visual Basic must
know in advance which kind of object should be created when it
references that variable for the first time.

 In some complex routines, you might declare a variable but never
actually use it: this happens all the time with standard variables and
with object variables too, but it creates a problem with regular
(non-auto-instancing) object variables. In fact, if you create the
object with aSet command at the beginning of a procedure, you

113

CLASS & OBJECT

NOTES

might be creating an object—thus taking both time and memory—
for no real purpose. On the other hand, if you delay the creation of
an object until you actually need it, you could soon find yourself
drowning in a sea of Set commands, each preceded by an Is
Nothing test to avoid re-creating an object instanced previously. By
comparison, auto-instancing variables are automatically created by
Visual Basic only if and when they are referenced: In all other
cases, no time or memory will be wasted without reason. This is
probably the situation in which auto-instancing variables are most
useful.

 Finally, each time Visual Basic references an auto-instancing
variable, it incurs a small performance hit because it has to check
whether it’s Nothing. This overhead is usually negligible, but in
some time-critical routines it could affect the overall time.

 In summary, auto-instancing variables often aren’t the best choice,
and in general I advise you not to use them. Most of the code
shown in this chapter doesn’t make use of auto-instancing
variables, and you can often do without them in your own
applications as well.

Property procedures
 Let’s go back to the CPerson class and see how the class can

protect itself from invalid assignments, such as an empty string for
its FirstName or LastNameproperties. To achieve this goal, you
have to change the internal implementation of the class module
because in its present form you have no means of trapping the
assignment operation. What you have to do is transform those
values into Private members and encapsulate them in pairs of
Property procedures. This example shows the code for Property
Get and Let FirstName procedures, and the code for LastName is
similar.

 ‘ Private member variables
Private m_FirstName As String
Private m_LastName As String
‘ Note that all Property procedures are Public by default.
Property Get FirstName() As String
‘ Simply return the current value of the member variable.
FirstName = m_FirstName
End Property
Property Let FirstName(ByVal newValue As String)
‘ Raise an error if an invalid assignment is attempted.
If newValue = "" Then Err.Raise 5 ‘ Invalid procedure argument
‘Else store in the Private member variable.
m_FirstName = newValue
End Property

Review & Self Assessment Question
Q1-Explain Class and Objects?

114

VISUAL BASIC
PROGRAMMING

NOTES

Q2-What are the main benefits of OOP’s?
Q3-What do you mean by polymorphism?
Further Readings
Visual basic by David I Schneider
Visual basic by Steven Holzner
Visual basic by Bill Sheldon
Visual basic by Billy Holls
Visual basic by Rob Windsor

115

COMPONENT OBJECT
MODEL

NOTES

UNIT: 13 – COMPONENT
OBJECT MODEL

Contents
 Component Object Model
 Distributed Component Object Model
 Building a Com Object With Visual Basic
 Review & Self Assessment Question
 Further Readings

Component Object Model
The Component Object Model (COM) is a Microsoft

framework for managing component objects, allowing them to
communicate by calling methods of other components in their object
workspace. Each component in the framework is a self-contained program.
Traditional programs cannot communicate with programs outside their
workspace when running, without using other services such as DDE,
TCP/IP, etc.
ActiveX is the name given to the services based around the COM
framework. The components may be visual (embedded into other
documents using Object Linking and Embedding), or a set of services
(compiled as a Dynamic Link Library (DLL)).
DISTRIBUTED COM:
The Distributed Component Object Model (DCOM) extends the COM
framework so that components may communicate across different
computers. It achieves this by executing a Remote Procedure Call
(RPC) to a server, which executes the method and returns the results to the
client. Creating DCOM components allows you to extend the functionality
of ASP. As the components are compiled, they tend to run much faster
than calling script routines through the ASP interpreter.
REGISTERING COMPONENTS:
When you develop a COM object, the component is automatically
registered on the computer when it's compiled. If you are developing a
component for another computer, then you have to copy the compiled DLL
to the server and register it explicitly using regsvr32.
BUILDING A COM OBJECT WIITH VISUAL BASIC:
The discussion has thought to create a COM object using Visual Basic.
The object will be used to determine if a string is a palindrome (a string
that reads the same forwards as it does backwards, ignoring case and
punctuation).
A DLL project in Visual Basic is implemented as a class module. The
class module allows you to define attributes (data of the class), and
methods (the functionality of the class). One of the principle concepts of
object-oriented programming is that the data of the class is encapsulated in
the object. This means that variables of the class are not accessible directly

116

VISUAL BASIC
PROGRAMMING

NOTES

without using some method. Methods of the class tend to be declared as
Public as they must be accessible from outside the class. If the class has
functions that you don't want to be accessed outside of the class, then you
declare them as Private. The Palindrome component we will create has
no attributes (variables), one public method to check if a string is a
palindrome, and a private function to format the string to determine if it's a
palindrome.
Starting The Project:
Start an ActiveX DLL project in Visual Basic. Set the name of the project
to CheckPalindrome, and the name the Class Module Palindrome. The
following is the code for the Class module
Palindrome.cls
Option Explicit
Public Function isPalindrome(ByVal strPal As String) As
Boolean
 Dim strTemp As String
 strPal = stripPunctuation(strPal)
 strTemp = StrReverse(strPal)
 isPalindrome = (strTemp = strPal)
End Function
Private Function stripPunctuation(ByVal strOriginal As String)
As String
 Dim strStripped As String
 Dim iAscii As Integer, counter As Integer
 strOriginal = LCase(strOriginal)
 For counter = 1 To Len(strOriginal)
 iAscii = Asc(Mid(strOriginal, counter, 1))
 ' The lowercase ASCII range is 97 to 122
 If iAscii > 96 And iAscii < 123 Then
 strStripped = strStripped & Chr(iAscii)
 End If
 Next counter
 stripPunctuation = strStripped
End Function

Create the DLL by selecting "Make CheckPalindrome.dll" from the File
menu. The component will be automatically registered on the machine.

Testing The Component:
You can test the new object by creating a new Standard Exe
project in Visual Basic. In the new project, select the "Project" menu item,
then select "References". Scroll down to our new
component"CheckPalindrome", and place a tick against it. You can now
use the object directly in the project.
The following example has one TextBox called txtPal, and one
CommandButton called cmdTest.

117

COMPONENT OBJECT
MODEL

NOTES

usepal.frm
Option Explicit
Private Sub cmdTest_Click()
 Dim objPal As New Palindrome
 If objPal.isPalindrome(txtPal.Text) = True Then
 MsgBox txtPal.Text & " is a palindrome"
 Else
 MsgBox txtPal.Text & " is not a palindrome"
 End If End Sub

Review & Self Assessment Question
Q1-What is Component Object Model?
Q2-What id Distributed COM Explain it?
Further Readings
Visual basic by David I Schneider
Visual basic by Steven Holzner
Visual basic by Bill Sheldon
Visual basic by Billy Holls
Visual basic by Rob Windsor

118

VISUAL BASIC
PROGRAMMING

NOTES

UNIT: 14 - ACTIVEX CONTROL
IN VISUAL BASIC

Contents

 Active X Control
 Adding Built –in ActiveX Control to the Toolbox
 List of Built-in ActiveX Controls

o Month View Control
o Date Time Picker
o Progress Bar
o Status Bar
o Image List

 Review & Self Assessment Question
 Further Readings

ActiveX Controls:

One of the most exciting feature of Visual Basic is the ActiveX.It is the
technology developed by Microsoft that defines a communication standard
between applications. The ActiveX control exists as separate files with
a.ocx file name extension. These include controls that are available in all
editions of Visual Basic and those that are available only in the
Professional and Enterprise editions (such as Listview, Toolbar,
Animation, and Tabbed Dialog).
Adding Built-in ActiveX Controls to the Toolbox:

1. From the Project Menu, choose Components. You can also right click
on toolbox. A popup menu is open select components.
2. A component dialog box is open .Select the Microsoft windows
common controls 6.0(SP6).
3. Then click on apply button .you can see some other components like
Listview,
Toolbar, Animation, and Tabbed Dialog show on your toolbox. Click on
close button. Use this control as you want

119

ACTIVE-X CONTOL
IN VISUAL BASIC

NOTES

To build an ActiveX control from scratch and compile it so that it is usable
as a command button or a list box is in other projects; you write the
ActiveX Control and then compile it to an OCX file. The ocx file contains
only the user controls that were part of the VB project you built it from
and no extra stuff like forms or full programs.
List of Built-in ActiveX Contorls:
Visual basic 6.0 offers us many built -in activeX Controls of which a few
are listed and briefly explained below.

120

VISUAL BASIC
PROGRAMMING

NOTES

MonthView
A MonthView control display the current month and lets the user scroll
through of the month as well .The day, month and year can be displayed
using the month view control.
1. Click on “Start” . Then select “All Programs, Microsoft Visual Studio
6.0 and Microsoft Visual Basic 6.0.” .
2. Select “Standard EXE” from the list in the New Project dialog box and
click on “Open.”Click on “Project” on the menu bar, then selects”
Components” from the drop-down menu.
3. Scroll down the list in the box until Microsoft Windows Common
Controls2 6.0 (SP4) is visible. Click on the checkbox to select the
component and then click on “OK.” All components show in the Toolbox.

4. Choose the“MonthView1” control from the list of controls in the
toolbox. Place the control on the form in Visual Basic. Also place
Textbox1 to the Form1.

121

ACTIVE-X CONTOL
IN VISUAL BASIC

NOTES

5. Double click on Form1.Code window is open, write code here as shown
in figure below:

6.Press<F5> to run the program. Output is:

DateTimePicker
DateTimePicker is a ActiveX controls. The Date/Time Picker control
allow the user to specify a date and time. Date/Time Picker control can
display a Month View as a drop down control or the current time with an
up down control to let the user select the require time.A MonthView
control or Date/time Picker control can be added to a program by using the
following steps The DateTimePicker control enables you to provide a
formatted date field . Users can select a date from a dropdown calendar
interface similar to the MonthView control.
1. Click on “Start” Button. select “All Programs, Microsoft Visual Studio
6.0 and Microsoft Visual Basic 6.0.” .
2. Select “Standard EXE” from the list in the New Project dialog box and
click on“Open.” Click on “Project” on the menu bar, then
select “Components” from the drop-down menu.
3. Scroll down the list in the box until Microsoft Windows Common
Controls2 6.0 (SP4) is visible. Click on the checkbox to select the
component and then click on“OK.” All components show in the Toolbox.
4. Choose the “DT Picker1” control from the list of controls in the
toolbox. Place the control on the form in Visual Basic.
5. Also place one Label1,Textbox and a monthview control on the Form1.
6.Set the caption property “Date” of Label1 .

122

VISUAL BASIC
PROGRAMMING

NOTES

7. Double click on form1.Code window is open .write code here as shown
in figure below:

8.Press<F5> to run the program.Output is below:

Progress bar
A progress bar control allows you to graphically represent the progress of
a transaction. It is used to inform the user about processing. It shows the
user the status of computations/processing. Number of applications, such
as setups, database-driven applications, and file transfer tools, swear by
progress bars.
1. Click on “Start” .Select “All Programs -> Microsoft Visual Studio 6.0 -
>Microsoft Visual Basic 6.0.” .
2. Select “Standard EXE” from the list in the New Project dialog box and
click on “Open.”Click on “Project” on the menu bar, then
select “Components” from the drop-down menu.
3. Scroll down the list in the box until Microsoft Windows Common
Controls 6.0 (SP4) is visible. Click on the checkbox to select the
component and then click on“OK.” All components show in the Toolbox.
4. Choose the “Progress Bar” control from the list of controls in the
toolbox. Place the control on the form in Visual Basic.Also add one Label1
and Timer1 control on the Form1.

123

ACTIVE-X CONTOL
IN VISUAL BASIC

NOTES

5. Change the Timer1 property “Interval=100″.Double click on timer1
control and write code here as shown in figure below:

6. To Run the program press <f5>. You see when run the program time is
start Progressbar value is shown in Label1.when the time is complete .The
application is terminate.Output is below:

ToolBar

124

VISUAL BASIC
PROGRAMMING

NOTES

A ToolBar control consist of a collection of button objects used to create a
toolbar that can be associated with an application. It has become one of the
most important tools for providing an easy interface to the users. the
toolbar control provides easy access to options available in your
applications. A toolbar control contains a collection of buttons objects
used to create a Toolbar.
1. Click on “Start”. Then select “All Programs, Microsoft Visual Studio
6.0 and Microsoft Visual Basic 6.0.” .
2. Select “Standard EXE” from the list in the New Project dialog box
and click on “Open.” Click on “Project” on the menu bar, then
select “Components” from the drop-down menu.
3. Scroll down the list in the box until Microsoft Windows Common
Controls 6.0 (SP4) is visible. Click on the checkbox to select the
component and then click on “OK.” All components show in the Toolbox.
4. Choose the “ToolBar” control from the list of controls in the toolbox.
Place the control on the form in Visual Basic.
5. Right click on toolbar a popup menu is open choose properties from
popup menu. Set the properties as desired for the control. You can also add
some buttons on the toolbar. For this you click on the Buttons tab and then
click on the Insert Button. you add buttons as you wish.

6.We add four Buttons on the toolbar.It is shown in Figure below:

125

ACTIVE-X CONTOL
IN VISUAL BASIC

NOTES

7. Double Click on toolbar.Code window is open .add code here as shown
in figure:

8. When you are done with these steps, press<F5> to run the program.
Output is given below:

126

VISUAL BASIC
PROGRAMMING

NOTES

StatusBar
The StatusBar control is another ActiveX control.It is also available in
Windows Common Controls components.With the help of StatusBar, you
can easily display information about the date, time, and other details about
the application and the environment to the user. A Statusbar control is a
frame that can consisit of sveral panels,which informs the user of the status
of an application. It is made up of Panel objects, each of which displays
different types of information.
1. Click on “Start” . Then select “All Programs, Microsoft Visual Studio
6.0 and “Microsoft Visual Basic 6.0.” .
2. Select “Standard EXE” from the list in the New Project dialog box and
click on “Open.” Click on “Project” on the menu bar, then
select “Components” from the drop-down menu.
3. Scroll down the list in the box until Microsoft Windows Common
Controls 6.0 (SP4) is visible. Click on the checkbox to select the
component and then click on “OK.” All components show in the Toolbox.
4. Choose the “StatusBar” control from the list of controls in the toolbox.
Place the control on the form in Visual Basic.

127

ACTIVE-X CONTOL
IN VISUAL BASIC

NOTES

5. By default, one panel is show on the StatusBar.Double click on
StatusBar and write code here as shown in figure below:

7. To Run the program press <f5>. When you click on StatusBar

panel then a msgbox is shown. Output is :

ImageList
An ImageList Control contains a collection of images that can be used by
other Windows Common Control ,Such as ListView,TreeView,TabStrip
and ToolBar controls.It does not appeare on the format run time.It serve as
a container for icon that are accessed by other control such
as ListView,TreeView,TabStrip and ToolBar controls.
A ListView control displays data as ListItem objects.each ListItem object
can have an optional icon associated with the Label of the object.
1. Click on “Start”. Then select “All Programs, Microsoft Visual Studio
6.0 and Microsoft Visual Basic 6.0.”.
2. Select “Standard EXE” from the list in the New Project dialog box and
click on“Open.” Click on “Project” on the menu bar, then
select “Components” from the drop-down menu.
3. Scroll down the list in the box until Microsoft Windows Common
Controls 6.0 (SP4) is visible. Click on the checkbox to select the
component and then click on“OK.” All components show in the Toolbox.
4. Choose the “ListView1” control from the list of controls in the toolbox.
Place the control on the form in Visual Basic.
5. Choose the “ImageList1” control from the list of controls in the
toolbox. Place the control on the form in Visual Basic.

128

VISUAL BASIC
PROGRAMMING

NOTES

6. Right click on Image control a popup menu is open choose

properties option. A Properties Page is open .Click on Images Tab
and insert the image as you want. If you want insert more than one
picture then click on Insert Picture Button as shown in figure
below:

 7. Right click on the ListView1 A popup menu is open choose properties
option. A Properties page is open. Click on the imagelist tab and insert the
imagelist1 then “OK” as shown in figure below:

129

ACTIVE-X CONTOL
IN VISUAL BASIC

NOTES

8. Double click on Form1.Code window is open. Write code here as shown
in figure:

9. Press <F5> to run the program. Output is shown below:

Review and Self Assessment Question
Q1-What is Active X Control?
Q2-Write the steps to Add Active X Control to toolbox?
Q3-What is Date Time Picker? Explain with example.
Q4- What is Progress bar? Explain with example.
Q5- Describe Toolbar?
Further Readings
Visual basic by David I Schneider
Visual basic by Steven Holzner
Visual basic by Bill Sheldon
Visual basic by Billy Holls
Visual basic by Rob Windsor

130

VISUAL BASIC
PROGRAMMING

NOTES

UNIT: 15 - DATA
ENVIRONMENT & DATA

REPORTS IN VISULA BASIC
 Contents
 Data Environment
 Steps to Add Data Environment
 Steps to Generate Data Report
 Review & Self Assessment Question
 Further Readings

Data Environment
Visual basic allows you to add a database environment just the way you
add a form. A data environment designer is an ActiveX designer tool
provided by Visual basic. A data environment designer provides a
interactive design time environment to access data from a database at run
time. A data environment enable to perform following task:

1. Right-click at the project in the project explorer whence a pop-up menu
appears.

2. Click at the add option when a list of insert able objects is displayed.
3. Choose data environment when one is added with a default name –data

environment1.you can always change the name to your choice by setting
its properties in the property window. :

131

DATA ENVIRONMENT
& DATA REPORT IN

VISUAL B ASIC

NOTES

4. Data environment opens a connection to the source database. However,
you will have to set it up manually. Let us change the name of the
connection1 to MyConnection1 simply type the same in the (Name)
property as shown below.

5. The connection object of the data environment component has a number
of properties that can be set to provide different functionalities to the
component.
6. You can connect to a desired database by the following step:
7. Right click at the MyConnection1 or whichever connection you have.
The pop menu shown below appears from where you can choose
properties.

132

VISUAL BASIC
PROGRAMMING

NOTES

8. When you click on properties… a dialog box shown below. This dialog
box helps you set the database link to his connection. It lists all the types
of database drivers currently installed on your machine. A typical dialog
box appears as shown below:

9. Select the Driver Microsoft Jet 4.0 OLE DB Provider.
10. Next, click at the Connection tab of the dialog box. The Connection tab
opens up as shown below:

133

DATA ENVIRONMENT
& DATA REPORT IN

VISUAL B ASIC

NOTES

11. Select the Microsoft Access database you wish to connect to by
clicking at button place on the right side of the textbox in which you enter
the name of the database. The database name is shown in the text box
shown in figure above.
12. Now, you can test whether your connection was established correctly
by clicking at Test Connection button as shown below:

13. If the connection could not be established you will get the message for
the same. Now your application is ready to use this connection to interact
with the database.
When the connection is create, we can create Data Reports.
How you can create Data Reports:-
A database contains a number of objects like tables, queries. When you
have created a connection to the desired database, and you need to select
the table in the database from which the data will be fetch in the report. To
do this right click at your data environment object and click at Add
Command as shown below:

2. A command object with the default name command1 is added to the
data environment as shown below:

134

VISUAL BASIC
PROGRAMMING

NOTES

3. Change Command’s name to MyCommand1 in the properties window.
4. Set the command to obtain data from a table from the connection
database. To do this right click at MyCommand1 and select properties. A
dialog box will appear as shown below:

5. In this dialog box set the desired Database Object like Table from

where you wish to get the data. so, we will take our data from a
table-Table1.

6. Alternatively, you can write an SQL statement for this command
object by clicking SQL statement option button.

135

DATA ENVIRONMENT
& DATA REPORT IN

VISUAL B ASIC

NOTES

7.

7. In case of Table object table fields are shown in MyCommand1
command object as shown in figure below:

8. Now you are ready to design your report. To include a report in

your application add one Data Report object in the Project Explorer
right clicking at the project as shown below:

136

VISUAL BASIC
PROGRAMMING

NOTES

9. A data report form is added to the project and displayed for modification
.Change the name of this data report to MyReport1 into the property box
as shown below.

10. To bind it to the data source MyDataSource1, click at Data Source
property of the report and select the data environment- MyDataSource as
shown below.

137

DATA ENVIRONMENT
& DATA REPORT IN

VISUAL B ASIC

NOTES

11. Now, your report knows from where it has to fetch its data. To select
the source object, set the DataMember property to MyCommand1 in the
property box of the report as shown below:

12. Now, you are ready to create your report, for this there are two way in
Visual Basic.
In First way, open the DataEnvironment1 and drag the field from this and
drop on the Detail (Section1). Drag and drop the fields as you want. Now
click open the project property box from Project menu.

138

VISUAL BASIC
PROGRAMMING

NOTES

Set the Strup Object to DataReport1.Now run the project to show the
report. Output is shown below.

The second way, by adding a command button to a form and writing some
code to open the report at its event click procedure. For this click open the
Form1 to add a command button as shown below.

Double click at the command button to open its event procedure. Add the
code for opening the report as shown below:

139

DATA ENVIRONMENT
& DATA REPORT IN

VISUAL B ASIC

NOTES

Click open the project property box from Project menu .Set the Strup
Object to Form1.Now run the project From1 should be displayed. Click at
the command button to show the report.Output is given below:

Review & Self Assessment Question
Q1- What is Data Environment?
Q2- Write the steps to add Data Environment?
Q3-Write the steps to generate Data report?
Further Readings
Visual basic by David I Schneider
Visual basic by Steven Holzner
Visual basic by Bill Sheldon
Visual basic by Billy Holls
Visual basic by Rob Windsor

140

VISUAL BASIC
PROGRAMMING

NOTES

UNIT: 16 - DATABASE
MANAGEMENT SYSTEM

Contents
 An introduction to database
 Data Control
 Using Code With a Data Control
 Validation Event
 Structure Query Language
 Primary Key
 Foreign Key
 Review & Self Assessment Question
 Further Readings

An introduction to Database
A table is a rectangular array of data. Each column of the table, called a
field, contains the same type of information. Each row, called a record,
contains the same type of information as every other row.
 Cities

A database (or relational database) is a collection of one or more (usually
related) tables that has been created with database management software.
The best known dedicated database management products are Access,
Btrieve, dBase, FoxPro, and Paradox. Every version of Visual Basic 6.0
can manage, revise, and analyze a database that has been created with one
of these products.
The databases used in this chapter can be found in the collection of files
accompanying this text. The database files have the extension .MDB. For
instance, the file MEGACTY1. MDB is a database file containing the two
tables presented on the preceding page.

141

DATABASE
MANAGEMENT SYSTEM

NOTES

THE DATA CONTROL
Visual Basic communicates with databases through the data control. Data
controls can read, modify, delete, and add records to databases. The
following walkthrough uses a data control to connect Visual Basic to the
database MEGACTY1.MDB.
A DATA CONTROLWALKTHROUGH
1. Press Alt/File/New Project and double-click on Standard EXE.
2. Double-click on the data control icon. Set its Name property to datCities
and its Caption property to Cities.
3. Stretch it horizontally to see the caption Cities.
4. Select the DatabaseName property and set it to the filespec for the file
MEGACTY1.MDB.
An Open File dialog box will help you locate the file.
5. Select the Record Source property and click on the down-arrow button
at the right of the Settings window.
The names of the two tables in the database, Cities and Countries, are
displayed.
6. Select Cities.
7. Place a text box, txtCity, on the form.
Text boxes are said to be data-aware because they can be bound to a data
control and access its data.
8. In the Properties window, select the DataSource property of txtCity.
9. Click on the down arrow to the right of the Settings box and select
datCities.
10. Select the DataField property and click on the down arrow at the right
of the Settings box.

You will see the names of the different fields in the table.
11. Select the field city.
The text box now is said to be bound to the data control. It can now
display data from the city field of the Cities table.
12. Place another text box, txtPop1995, on the form.
13. Select txtPop1995’s DataSource property.
14. Click on the down arrow to the right of the Settings box and select
datCities.
15. Select the DataField property, click on the down arrow at the right of
the Settings box, and select pop1995.
16. Run the program.
The form will appear as in Figure 11-1. The arrows on the data control,
called navigation arrows, look and act like VCR buttons. The arrows
have been identified by the tasks they perform.
17. Click on the various navigation arrows on the data control to see the
different cities and their populations in the Cities table displayed in the text
boxes.
18. Change the name of a city or change its population and then move to
another record.

142

VISUAL BASIC
PROGRAMMING

NOTES

 If you look back through the records, you will see that the data have been
permanently changed.

USING CODE WITH A DATA CONTROL
Only one record can be accessed at a time; this record is called the current
record. In this walkthrough,the text boxes bound to the data control
showed the contents of the city and pop1995 fields of the current record.
The user clicked on the navigation arrows of the data control to select a
new current record.
Code can be used to designate another record as the current record. The
methods MoveNext, MovePrevious, MoveLast, and MoveFirst select a
new current record as suggested by their names. For instance, the
statement

Data1.Recordset.MoveLast
specifies the last record of the table to be the current record. (The word
Recordset is inserted in most data-control statements that manipulate
records for reasons that needn’t concern us now.)

The entry of the field fieldName of the current record is
Data1.Recordset.Fields(“fieldName”).Value

For instance, with the status as in from previous, the statement
strVar = datCities.Recordset.Fields(“city”).Value assigns “Beijing”
to the variable strVar and the statements

datCities.Recordset.Edit
datCities.Recordset.Fields(“city”).Value = “Peking”
datCities.Recordset.Update
change the city field of the current record to “Peking”. (The first statement
makes a copy of the current record for editing. The second statement alters
the copy, and the third statement sends the new copy of the record to the
database.)

The number of previously accessed records in the table is given by
the RecordCount property. The EOF (End Of File) and BOF (Beginning
Of File) run-time properties indicate whether the end or beginning of the
file has been reached. For instance, the following two sets of statements
each place the cities into a list box.
datCities.Recordset.MoveLast ‘Needed to set value of RecordCount
datCities.Recordset.MoveFirst
For i = 1 to datCities.Recordset.RecordCount
lstBox.AddItem datCities.Recordset.Fields(“city”).Value
datCities.Recordset.MoveNext
Next i
datCities.Recordset.MoveFirst
Do
While Not datCities.Recordset.EOF

143

DATABASE
MANAGEMENT SYSTEM

NOTES

lstBox.AddItem datCities.Recordset.Fields(“city”).Value
datCities.Recordset.MoveNext
Loop
The current record can be marked for removal with the statement

Data1.Recordset.Delete
The record will be removed when a data control navigation arrow is
clicked or a Move method is executed. A new record can be added to the
end of the table with the statement

Data1.Recordset.AddNew
followed by

Data1.Recordset.Fields(“fieldName”).Value = entryForField
statements for each field and a

Data1.Recordset.Update
statement. Alternately, the AddNew method can be followed by the user
typing the information into text boxes bound to the data control and then
moving to another record. (Note: When you add a record and then click on
the MovePrevious arrow, you will not see the next-to-last record, but
rather will see the record preceding the record that was current when
AddNew was executed.)
THE VALIDATION EVENT
Visual Basic has a device called validation that lets you restrict the values
a user can enter into a table. For instance, if the Cities table is only to
contain cities with a population of more than 1 million, you can use
validation to prevent any record with a number less than 1 in the pop1995
field from being entered. Validation also allows you to catch (and prevent)
errors that might cause a program to crash.
Data controls have an event procedure called Validate that is activated
whenever the current

1. Record is about to be changed. For instance, it is called when a
navigation arrow is clicked or a Move, Update, Delete, or AddNew
method is executed. The general form of the Validate event
procedure is

Private Sub Data1_Validate (Action As Integer, Save As Integer)
statement(s)
End Sub
The value of Action identifies the specific operation that triggered the
event and the value of Save specifies whether data bound to the control has
changed. You can change the value of the

1. Action argument to perform a different action. Some values of the
Action argument are shown in table

144

VISUAL BASIC
PROGRAMMING

NOTES

If you assign 0 to the Action argument, the operation will be canceled
when the Validate event procedure is exited.
The value of Save is –1 (True) if the data in any control attached to the
data control have changed and is 0 (False) otherwise. If you set the value
of Save to 0 in the Validate event procedure, any changes will not be
saved.
Consider the form created in the walkthrough. Suppose the contents of
txtPop1995, the 1995 population text box, is changed to .8 and then a
navigator arrow is clicked in an attempt to move to another record. The
following code prevents the move.
Private Sub datCities_Validate (Action As Integer, Save As Integer)
Dim strMsg As String
If val(txtPop1995) < 1 then
strMsg = “We only allow cities having a population ” & _ “at least one
million.”
MsgBox strMsg“City too small!”
Action = 0
End If
End Sub
If the statement
Action = 0 is changed to
Save = 0
the move will take place, but the previous record will retain its original
values. That is, the number .8 will not appear in the table.
Relational Databases and SQL
Primary and Foreign Keys
A well-designed table should have a field (or set of fields) that can be used
to uniquely identify each record. Such a field (or set of fields) is called a
primary key. For instance, in the Countries table , the country field is a
primary key. In the Cities table, because

1. we are only considering very large cities (of over 1 million
population), the city field is a primary key. Databases of student
enrollments in a college usually use a field of social security
numbers as the primary key. Names would not be a good choice
because there could easily be two students having the same name.

When a database is created, a field can be specified as a primary key. If so,
Visual Basic will insist that every record have an entry in the primary key
field and that the same entry does not appear in two different records. If
the user tries to enter a record with no data in the primary key, the error
message “Index or primary key can’t contain a null record.” will be
generated. If the user tries to enter a record with the same primary key data
as another record, the error message “Duplicate value in index, primary
key, or relationship. Changes were unsuccessful.” will be displayed.

When a database contains two or more tables, the tables are usually
related. For instance, the two tables Cities and Countries are related by
their country field. Let’s refer to these two fields as Cities. Country and

145

DATABASE
MANAGEMENT SYSTEM

NOTES

Countries. country. Notice that every entry in Cities. country appears
uniquely in Countries. country and Countries. Country is a primary key.
We say that Cities. country
is a foreign key of Countries.country. Foreign keys can be specified when
a table is first created.
If so, Visual Basic will insist on the Rule of Referential Integrity,
namely, that each
value in the foreign key must also appear in the primary key of the other
table.
The CD accompanying this book contains a database named
MEGACTY2.MDB. It has the same information as MEGACTY1.MDB
except that Cities. city and Countries. country have been specified as
primary keys for their respective tables, and Cities. Country has been
specified as a foreign key of Countries. country. If the user tries to add a
city to the Cities table whose country does not appear in the Countries
table, then the error message “Can’t add or change record. Referential
integrity rules require a related record in table ‘Countries’.” will be
displayed. The message will also be generated if the user tries to delete a
country from the Countries. Country field that appears in the Cities.
Country field. Due to the interdependence of the two tables in
MEGACTY2.MDB, this database is called a relational database.

A foreign key allows Visual Basic to link (or join) together two
tables from a relational database in a meaningful way. For instance, when
the two tables Cities and Countries from MEGACTY2.MDB are joined
based on the foreign key Cities. country, the result is Table.
The record for each city is expanded to show its country’s population and
its currency. This joined table is very handy if, say, we wanted to click on
navigation arrows and display a city’s name and currency. We only have
to create the original two tables; Visual Basic creates the joined table as
needed. The request for a joined table is made in a language called SQL.

SQL
Structured Query Language (SQL) was developed in the early 1970s at
IBM for use with relational databases. The language was standardized in
1986 by ANSI (American National Standards Institute). Visual Basic uses
a version of SQL that is compliant with ANSI-89 SQL.

146

VISUAL BASIC
PROGRAMMING

NOTES

SQL is a very powerful language. One use of SQL is to request
specialized information from an existing database and/or to have the
information presented in a specified order.
FOUR SQL REQUESTS
We will focus on four basic types of requests that can be made with SQL.
Request I: Show the records of a table in a specified order.
Some examples of orders with MEGACTY2.MDB are
(a) Alphabetical order based on the name of the city.
(b) Alphabetical order based on the name of the country, and within each
country group, the name of the city.
(c) In descending order based on the projected 2015 population.
Request II: Show just the records that meet certain criteria.
Some examples of criteria with MEGACTY2.MDB are
(a) Cities that are in China.
(b) Cities whose 2015 population is projected to be at least 20 million.
(c) Cities whose name begins with the letter S.
Request III: Join the tables together, connected by a foreign key, and
present the records as in Requests I and II.
Some examples with MEGACTY2.MDB are
(a) Show the cities in descending order of the populations of their
countries.
(b) Show the cities whose currency has “u” as its second letter.
Request IV: Make available just some of the fields of either the basic
tables or the joined table. (For now, this type of request just conserves
space and effort by Visual Basic. However, it will be very useful in
Section 11.3 when used with a FlexGrid control.)
Some examples with MEGACTY2.MDB are
(a) Make available just the city and country fields of the table Cities.
(b) Make available just the city and currency fields of the joined table.
Normally, we set the RecordSource property of a data control to an entire
table. Also, the records of the table are normally presented in the order
they are physically stored in the table.
We make the requests discussed above by specifying the RecordSource
property as one of the following kinds of settings.
Request I: SELECT * FROM Table1 ORDER BY field1 ASC
or SELECT * FROM Table1 ORDER BY field1 DESC
Request II: SELECT * FROM Table1 WHERE criteria
Request III: SELECT * FROM Table1 INNER JOIN Table2 ON foreign
field= primary field WHERE criteria
Request IV: SELECT field1, field2, . . . fieldN FROM Table1 WHERE
criteria
The words ASC and DESC specify ASCending and DESCending orders,
respectively. A criteria clause is a string containing a condition of the type
used with If blocks. In addition to the standard operators <, >, and =,
criteria strings frequently contain the operator Like.

147

DATABASE
MANAGEMENT SYSTEM

NOTES

Essentially, Like uses the wildcard characters? and * to compare a string to
a pattern. A question mark stands for a single character in the same
position as the question mark. For instance, the pattern “B?d” is matched
by “Bid”, “Bud”, and “Bad”. An asterisk stands for any number of
characters in the same position as the asterisk. For instance, the pattern
“C*r” is matched by “Computer”, “Chair”, and “Car”. See Comments 3
through 5 for further information about Like.
In the sentence

SELECT fields FROM clause
fields is either * (to indicate all fields) or a sequence of the fields to be
available (separated by commas), and clause is either a single table or a
join of two tables. A join of two tables is indicated by a clause of the form
table1 INNER JOIN table2 ON foreign key of table1=primary key of
table2
Appending

WHERE criteria
to the end of the sentence restricts the records to those satisfying criteria.
Appending

ORDER BY field(s) ASC (or DESC)
presents the records ordered by the specified field or fields.
In general, the SQL statements we consider will look like

SELECT www FROM xxx WHERE yyy ORDER BY zzz
where SELECT www FROM xxx is always present and accompanied by
one or both of WHERE yyy and ORDER BY zzz. In addition, the xxx
portion might contain an INNER JOIN phrase.
The settings for the examples mentioned earlier are as follows:
I (a) Show the records from Cities in alphabetical order based on the name
of the city.

SELECT * FROM Cities ORDER BY city ASC
I (b) Show the records from Cities in alphabetical order based first on the
name of the country and,, within each country group,, the name of the city.

SELECT * FROM Cities ORDER BY country,, city ASC
I (c) Show the records from Cities in descending order based on the
projected 2015 population.

SELECT * FROM Cities ORDER BY pop2015 DESC
II (a) Show the records for the Cities in China.

SELECT * FROM Cities WHERE country = ‘China’
II (b) Show the records from Cities whose 2015 population is projected to
be at least 20 million.

SELECT * FROM Cities WHERE pop2015 >= 20
II (c) Show the records from Cities whose name begins with the letter S.

SELECT * FROM Cities WHERE city Like ‘S*’
III (a) Show the records from the joined table in descending order of the
populations of their countries.

SELECT * FROM Cities INNER JOIN Countries ON
Cities.country =

148

VISUAL BASIC
PROGRAMMING

NOTES

1. Countries.country ORDER BY Countries.pop1995 DESC
III (b) Show the records from the joined table whose currency has “u” as
its second letter.

SELECT * FROM Cities INNER JOIN Countries ON
Cities.country =

Countries.country WHERE currency Like ‘?u*’
IV (a) Make available just the city and country fields of the table Cities.

SELECT city, country FROM Cities
IV (b) Make available just the city and currency fields of the joined table.

SELECT city,, currency FROM Cities INNER JOIN Countries ON
Cities.country

= Countries.country
Note: In several of the statements, the single quote, rather than the normal
double quote was
used to surround strings. This is standard practice with SQL statements.
We can think of an SQL statement as creating in essence a new “virtual”
table from existing tables. For instance, we might regard the statement

SELECT city, pop2015 FROM Cities WHERE pop2015 >= 20
as creating the “virtual” table

This table is a subtable of the original table Cities, that is, it consists of
what is left after certain columns and rows are deleted.
As another example, the statement

SELECT Cities.city, Cities.Country, Country.currency FROM
Cities INNER JOIN

Countries ON Cities.country = Countries.country WHERE
Countries.country>’K’
creates in essence the “virtual” table

which is a subtable of a join of the two tables Cities and Countries.
These “virtual” tables don’t really exist physically. However, for all
practical purposes, Visual Basic acts as if they did. In Visual Basic
terminology, a “virtual” table is called a recordset and SQL statements are
said to create a recordset. In standard relational database books, a “virtual”
table is called a view.

SQL also can be used in code with a statement of the form
Data1.RecordSource = “ SELECT ... FROM ...”

to alter the order and kinds of records presented from a database. However,
such a statement must be followed by the statement

Data1.Refresh
to reset the information processed by the data control.

149

DATABASE
MANAGEMENT SYSTEM

NOTES

FIND METHODS
Suppose a table has been attached to the data control Data1, and an SQL
statement has been
used to create and order a recordset. Then a statement of the form

Data1.RecordSet.FindFirst criteria
starts at the beginning of the recordset, searches for the first record in the
recordset that satisfies the criteria, and makes that record the current
record. (Here, criteria is a string just like a criteria phrase that follows
WHERE in an SQL statement.) The related methods Find- Last, FindNext,
and FindPrevious function as their names suggest. (FindLast starts at the
end of the recordset. FindNext and FindPrevious start at the current
record.) For instance, suppose an SQL statement ordered the cities
alphabetically by name. The following statements and their outcomes
show the effects of the various Find methods. (In each case, assume that
the current record is Mexico City.)

Visual Basic has two properties, NoMatch and Bookmark that help when a
Find method fails to locate a suitable record.
If BkMk is a string variable, a statement of the form

BkMk = Data1.Recordset.Bookmark
assigns the location of the current record to the variable BkMk. When
desired, the statement

Data1.Recordset.Bookmark = BkMk
will return to the original location in the table.
If a Find method does not locate a record matching the criteria, the first or
last record (depending on where the search is heading) in the recordset
becomes the current record and the NoMatch property is set to True.
Therefore, the following lines of code can be used to keep the current
record current whenever the Find method is unsuccessful.
BkMk = Data1.Recordset.Bookmark
Data1.Recordset.FindNext criteria
If Data1.Recordset.NoMatch = True Then
Data1.Recordset.Bookmark = BkMk
End If
USING THE DATA-BOUND LIST BOX AND COMBO BOX CONTROLS
The data-bound list box and data-bound combo box controls look like the
standard list box and combo box controls. They are often used with data-
entry forms to speed data entry and ensure that valid data is entered. These
controls automatically fill with a column from a table or recordset after
you set a few properties. Note that the data-bound controls display data
from a table or a recordset. Therefore, three methods (AddItem, Clear, and
RemoveItem) and two properties (ListCount and Sorted) used with the

150

VISUAL BASIC
PROGRAMMING

NOTES

regular list box and combo box are not available with the data-bound
controls. The count of items displayed in a data-bound control is
determined by the RecordCount property of the recordset.
Two key properties determine the entries of a data-bound list or combo
box—Row- Source and ListField. RowSource specifies a data control,
and ListField specifies a field from the data control’s table or recordset.
That field will be used to fill the list.
CREATING A DATABASE WITH VISUAL DATA MANAGER
You invoke Visual Data Manager (VisData) from Visual Basic by pressing
Alt/Add-Ins/Visual Data Manager. The first two entries of the File menu
of VisData are Open Database, used to view and alter an existing database,
and New, used to create a new database.

Let’s focus on creating a new database. After you select New, you are
presented with a drop-down menu used to choose the type of database as
shown in figure. Choose Microsoft Access and then specify a version.
(Version 7.0 is the latest version of Access, the one that comes with the
Professional Edition of Office 97.) Then a standard file-naming dialog box
titled “Select Microsoft Access Database to Create” appears

After you name the database, say as MEGACITY.MDB, and click Save,
the Database window and SQL Statement box appear. We will work solely
with the Database window.

151

DATABASE
MANAGEMENT SYSTEM

NOTES

Suppose you want to create a database with two tables. Starting from the
Database window, the basic steps are as follows:
1. Create the database and the two tables.
(a) Click on the right mouse button within the Database window. Click on
New
Table and use the Table Structure window to name the first table and to
specify the fields and their data types.
(b) Repeat Step 1 for the second table.
2. (Optional) Specify a primary key for a table.
(a)Highlight the table name in the Database window.
(b) Press the right mouse button and choose Design to invoke the Table
Structure window.
(c) Press the Add Index button to invoke the Add Index window and
follow the steps listed after the figure.
3. Place records into a table.
 (a) Double-click on the table in the Database window to invoke the Table
window
(b) Follow the directions listed after Figure.

How to use the Table Structure window
1. Type the name of the table in the Table Name text box.
2. Click on the Add Field button. (An Add Field window will be
displayed.)
3. Type the name of a field in the Name text box.

152

VISUAL BASIC
PROGRAMMING

NOTES

4. Click on the down arrow of the Type combo box and select a type from
the dropdown list. (We use primarily the type “Text” for string, and
“Single” or “Integer” for numbers.)
5. If the data type is “Text,” type the length of the largest possible string
needed in the Size box. (For instance, length 20 should suffice for names
of cities. The length must be no longer than 255 characters.)
6. Press OK to add the field to the table.
7. Repeat Steps 3 through 6 until you have added all the fields to the table.
When you are through, click on the Close button to return to the Database
window.
8. To delete a field, highlight the field by clicking on it in the list box and
then press the Remove Field button.
9. When all fields have been specified, press the “Build the Table” button
to save the table and return to the Database window. (If we later decide to
add a new field or delete an existing field, we can return to the Table
Structure window by highlighting the table in the Database window,
clicking the right mouse button, and choosing Design.)

How to use the Add Index window to specify a primary key
1. Type in a name for an index, such as principal, click on the field which
is to be the primary field, and place check marks in the Primary and
Unique check boxes.

2. Click OK and then click Close.
3. Press “Build the Table” or Close to return to the Database window.

153

DATABASE
MANAGEMENT SYSTEM

NOTES

How to use the Table window
1. If the table has no records, the Value text boxes will be blank. To add a
record, type data into the fields and press the Update button.
2. To add a new record to the end of a table that already contains records,
click the Add button, type data into the fields, and press the Update button
3. To view an existing record, use the navigator buttons (identical to those
of the data control) or the Find button to move to a record of a specified
value.
4. To remove the current record from the table, click the Delete button.
The record is immediately deleted and cannot be recovered.
5. To edit an existing record, make changes in the data and click on the
Update button.
6. Press the Close button to return to the Database window.
At any time, the main section of the Database window contains a list of the
tables you have specified. Initially the main section is blank except for
Properties.
(This is a list of properties pertaining to the database.) If you click the right
mouse button while highlighting a table, a menu will appear with the
following options:

Review & Self Assessment Question
Q1-What is Database?
Q2- What do you mean by Validation Event?
Q3-What is Primary Key?
Q4-Describe Foreign Key?
Q5-What do you mean by Structure Query Language?

Further Readings

154

VISUAL BASIC
PROGRAMMING

NOTES

Visual basic by David I Schneider
Visual basic by Steven Holzner
Visual basic by Bill Sheldon
Visual basic by Billy Holls
Visual basic by Rob Windsor
BIBLIOGRAPHY
 Visual basic by David I Schneider
Visual basic by Steven Holzner
Visual basic by David McCarter
Visual basic by Gaston C Hillor
Visual basic by Todd Herman

